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ABSTRACT

Alzheimer’s disease (AD) is the most common form of neurodegenerative disease. 

Nationally, AD is the 6th leading cause of death and the only top 10 killer of Americans 

that cannot be slowed, cured, or prevented. AD is characterized by the deposition of 

extracellular plaques of aggregated amyloid-β protein (Aβ). Aβ originates from the 

amyloid precursor protein (APP), a transmembrane protein that is cleaved to form a short 

and inert protein fragment called Aβ. However, Aβ undergoes a nucleation process wherein 

aggregates from soluble oligomers to insoluble fibrils are formed. While uncertainty 

remains as to the exact mechanism, studies have associated Aβ aggregates with an increase 

in reactive oxygen species (ROS), potentially explaining their toxicity. Unfortunately, 

current AD treatments target disease symptoms and not the underlying cause. 

Epidemiological studies have correlated particular diets with a reduced incidence 

of AD. Most of these diets are rich in fruits and vegetables and previous studies have 

identified many potential biochemical sources. Some, such as polyphenols, are of interest 

because of both their ability to interfere with Aβ aggregation and their ability to attenuate 

Aβ-induced intracellular ROS. Enhanced understanding of how biochemical can modulate 

aggregation can lead to the development of new AD therapeutics. This study explores the 

modulation of Aβ aggregation, either through 1) the use of small molecule modulators or 

2) targeting a structural motif embedded in Aβ’s primary sequence.  
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 First, this study explored the mechanistic effects of both olive-derived 

phenylethanoids and soy-derived isoflavones (SIFs) on Ab aggregation and toxicity. While 

both groups effect aggregation, this did not attenuate toxicity. Next, antioxidant capacity 

was investigated. Phenylethanoid and SIFs were good antioxidants. Further results 

indicated that some SIFs increase activity of intracellular antioxidant enzyme catalase, an 

enzyme responsible for hydrogen peroxide metabolizing. While no phenylethanoids had 

an antioxidant effect on toxicity, one SIF, DEN, was able to modulate toxicity. Ultimately, 

the strength of both groups was in their ability to act through both anti-aggregation and 

antioxidant mechanisms simultaneously. Moreover, tyrosol, a phenylethanoid, and 

genistein, a SIF, had a synergistic effects on Ab toxicity. 

 This study also explored ways in which aggregation could be altered using the Aβ 

protein primary sequence. Amyloid proteins have a conserved glycine zipper motif 

(GxxxG), which previous studies have shown to be important in oligomer formation and 

cellular interaction. Results indicate that zipper motif extension increase aggregation 

propensity and decrease aggregate size. Conversely, removal of a single zipper repeat has 

a deleterious effect on aggregation, and when aggregates form, they are wispy aggregates 

that lack many of the morphological features of traditional Aβ aggregates. 

From modulation of aggregation propensity to targeting toxicity, there are many 

viable routes to control Aβ. This study identified several promising ways to regulate Aβ 

aggregation: phenylethanoids that successfully shift aggregate equilibrium but their 

ultimate potential stems from their antioxidant capacity and dual action inhibition; SIFs 

which modulate aggregation and ameliorate toxicity through an array of mechanisms; and, 

finally, targeting the glycine zipper, which yielded dramatic effects on protein aggregation. 
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  CHAPTER 1 

BACKGROUND AND SIGNIFICANCE 

1.1 Alzheimer’s Disease: An Overview 

In 1906, Auguste Deter, a 51-year old German woman with rapid cognitive decline, 

was admitted to a psychiatric hospital showing symptoms of dementia, hallucinations, and 

delusions [1]. Upon her death, psychiatrist Alois Alzheimer discovered plaques, tangles, 

and damage to her brain’s vasculature and diagnosed her with presenile dementia. More 

than 100 years later, Alzheimer’s disease (AD), as it is now known, is the most common 

form of neurodegenerative disease and, in the United States, the only top 10 cause of death 

with no treatment, cure, or preventative [2]. While studies have established that it is a 

combination of risk factors, such as age, genetics, and environment, that contribute to the 

disease [3], one of the most important appears to be gender. AD has a clear gender bias; of 

the 5.3M American AD patients over the age of 65, nearly 2/3 of them are women. 

Incidence also increases with age; in Americans 70 and up, 16% of women have AD and 

11% of men [2]. AD incidence rates, both nationally and globally, are expected to climb as 

the population continues to grey, doubling roughly every 20 years. 

AD treatment is often ineffective. The Food and Drug Administration (FDA) has 

approved only 5 drugs for AD treatment: cholinesterase inhibitors donepezil and 

rivastigmine for early stage AD; N-methyl D-aspartate (NMDA) antagonists memantine 

and galantamine for late stage AD; and Namzaric®, which combines memantine and 

donepezil [4]. However, these drugs treat the symptoms of the disease: acetylcholine is 
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important for cognition and memory while NMDA antagonists work to stop glutamate-

induced cell death. In addition to merely treating some AD symptoms, there are often 

potent side effects associated with these drugs. Tacrine, a cholinesterase inhibitor once 

approved for AD treatment was discontinued due to frequent severe liver damage [5]. In 

addition to side effects and limits on efficacy, these treatment delay but do not stop disease 

progression. 

Current treatments and care, while only minimally effective, are also very costly. 

In 2017, total healthcare costs for AD treatment and care are expected to exceed $250 

billion. Over the next 30 years, as the number of AD patients is projected to grow to 13.8M, 

costs are projected to exceed $1 trillion [2]. 

1.2 The Amyloid Cascade Hypothesis 

While neuronal dysfunction and cell death are symptoms of AD, there are numerous 

events preceding onset of the disease. The amyloid precursor protein (APP) is a 

transmembrane glycoprotein found primarily in neurons. However, its function remains 

poorly understood with theories ranging from transport [6] to adhesion [7] with little 

consensus. Additionally, APP belongs to a family of evolutionarily conserved proteins that 

appear in numerous species of mammals [8]. According to the sometimes controversial [9] 

but widely accepted [10,11] theory of AD pathogenesis, the amyloid cascade hypothesis 

[12], AD is caused by the accumulation of the 40-42 amino acid long protein amyloid-β 

(Aβ) in the brain. In vivo, Aβ is produced from the sequential cleavage of APP. From 

cerebrospinal fluid [13] to blood plasma [14], Aβ is also found in a variety of places in the 

body. 
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In vivo, APP undergoes sequential cleavage by a-secretase, b-secretase (BACE), 

and g-secretase [15]. The formation of Aβ is heavily reliant on the sequence of cleavage. 

a-secretase cleaves in the center of Aβ and produces non-amyloidogenic fragments. While 

g-secretase cleaves at the Aβ C-terminus, BACE cleaves at the N-terminus and promotes 

the formation of the toxic amyloidogenic protein associated with AD [5]. These secretases 

are also the target of numerous familial mutations that can impact both the amount of 

protein produced and the severity of the disease.  

1.3 Aβ Aggregation 

While monomeric Aβ is inert and non-toxic, aggregated Aβ is associated with 

toxicity. Although the trigger for aggregation remains elusive, physical trauma such as 

traumatic brain injury (TBI) [16,17] and environmental factors [18] have been 

hypothesized to play a role. Once triggered, Aβ aggregates in a nucleation dependent 

pathway [19]. After the formation of early aggregates known as oligomers, aggregates 

rapidly coalesce to form insoluble fibrils and, eventually, these fibrils deposit as plaques 

frequently found in AD brain [20–22]. This process typically follows a sigmoidal growth 

curve with a lag, growth, and plateau phase as illustrated in Figure 1.1. 

As Aβ aggregates, it develops a characteristic β-sheet structure [23]. While the 

exact reasoning for this remains elusive, it is a common trait amongst amyloid proteins 

such as amylin (Type II Diabetes) or a-synuclein (Parkinson’s disease) [24]. It is theorized 

that the β-sheets are stabilized through p-p stacking of the aromatic phenylalanine 

residues [25].  

 In vivo, Aβ1-42 exists in a roughly 1:10 ratio with Aβ1-40 [26,27]. While greatly 

outnumbered by its smaller isoform, it has consistently proven to be the most toxic 
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species [23]. Additionally, Aβ1-42 has an increased propensity to aggregate due to its 

increased hydrophobicity. Aggregated Aβ1-40 and Aβ1-42 also deposit in different regions in 

vivo: Aβ1-40 is typically found in vascular deposits while Aβ1-42 typically deposits in the 

brain [28,29]. 

1.4 Mechanisms of Toxicity 

Many characteristics, such as the size or conformation, of toxic Aβ aggregates 

remain unclear [30]. Previously, fibrils, the large aggregates predominantly found in 

plaques, were thought to be the most toxic species. Recent studies, however, have shown 

that early aggregates like oligomers play an important role [31–33].  

The mechanism behind oligomer toxicity likely involves oxidative processes such 

as reactive oxygen species (ROS) [5]. ROS, if left unchecked, can damage a myriad of 

intracellular mechanisms and components. Some studies have shown that, during the 

aggregation process, Aβ spontaneously forms peroxide radicals, a form of ROS [34,35]. 

ROS also serves as a positive feedback loop. Studies have shown that the release of ROS 

as the result of mitochondrial dysfunction can actually stimulate Aβ aggregation [36]. 

1.5 Familial Alzheimer’s Disease  

AD is generally divided into two forms: early-onset and late-onset [37]. While late-

onset AD accounts for roughly 95% of AD cases and is associated with normal aging, 

early-onset can frequently be attributed to inherited mutations [38]. These mutations can 

affect a range of molecular targets such as the ApoE gene, a protein involved in signaling 

and binding, or the presenilin family of genes, which code for l-secretase. These mutations 

can range of effects from beneficial changes such as increased susceptibility to l-secretase 

cleavage [39], mutations within the APP sequence that increases secretase affinity, or even 
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within the Aβ sequence itself. Figure 1.2 illustrates commonly identified familial mutations 

inside the Aβ primary sequence. While some mutations have an effect on total Aβ 

production (Leuven, Swedish) others alter aggregation propensity (Iowa, Arctic, Dutch, 

English) and some do both (French, German, Austrian) [31,40]. 

1.6 Next Generation Therapies 

With the dearth of effective AD treatments, studies are ongoing for new and 

innovative alternatives. Some recent attention for AD treatment has centered around so-

called nutraceuticals: naturally occurring dietary compounds and food additives that 

provide extra health benefits. While some therapeutics have shown the ability to interfere 

with p-p stacking and break up β-sheet structure [41–45], polyphenols, dietary components 

commonly found in fruits and vegetables, are of particular interest. Numerous studies have 

proven their ability to attenuate Aβ-associated toxicity or alter the biophysical properties 

of aggregates [46–52], likely as a result of their typically hydrophobic and hydroxylated 

structure.  

But their appeal does not stop at aggregation. Many of these compounds, such as 

polyphenols, are known for being potent antioxidants. As such, studies additionally 

attributed their success to their antioxidant capacity, counteracting toxic free radicals as 

they interfere with the aggregation process [53,54]. Additionally, previous work has 

specifically found that antioxidant potential can be more powerful and beneficial than anti-

aggregation effects [46]. 

Other treatments are seeking to use the protein inspired design to alter 

aggregation [44,55]. Some of the most promising studies are creating monoclonal Aβ 

antibodies and using these to develop therapies while other are using the core Aβ sequence 
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and creating inhibitors. Others still are taking a repeating glycine zippper structural motif 

embedded within APP and creating novel inhibitors [56]. 

1.7 Study Overview 

This study investigates ways to modify Aβ aggregation through either the use of 

small molecule inhibitors such as 1) phenylethanoids derived from olives, 2) isoflavones 

from soybeans, or 3) via rationally designed Aβ sequence mutations. Aggregates were 

characterized for a variety of biophysical features ranging from morphology to toxicity. 

These studies comprise the three aims of this work and are described in more detail below. 

1.7.1 Phenylethanoids modulate aggregation and oligomer toxicity in Alzheimer’s 

disease 

 The first aim of this work is to test the hypothesis that phenylethanoids can alter 

the course of Aβ pathogenesis. This aim biophysically characterized the interaction 

between phenylethanoids and Aβ. Using a monomer aggregation assay and transmission 

electron microscopy, phenylethanoids were assessed for their effect on the entire 

aggregation pathway and aggregate morphology. Oligomers formed in the presence of 

phenylethanoids were used to both characterize the size and distribution of oligomers, but 

also their effect on caspase activation in neuroblastoma cells. Next, the antioxidant capacity 

of phenylethanoids was assessed and subsequently toxicity was tested using pre-formed 

oligomers and neuroblastoma cells. This study culminates in an assessment of the 

synergistic potential of phenylethanoids. 

1.7.2 Soy isoflavones attenuate Aβ toxicity through multiple mechanisms and pathways 

 The second aim of this work tests the hypothesis that soy isoflavones (SIFs) can 

modulate Aβ aggregation and attenuate toxicity. SIFs were assessed for their ability to act 
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simultaneously through anti-aggregation pathways and antioxidant pathways. Next, to 

ascertain the exact mechanism for each SIF, the anti-aggregation effects were explored for 

their ability to change monomer aggregation using a fluorescent assay, alter morphology 

using electron microscopy, change oligomer size and distribution using SDS-PAGE with 

Western blot, or, finally, to alter oligomer conformation using a hydrophobic dye. Finally, 

the effect of SIF anti-aggregation on caspase activation was assessed. Antioxidant effects 

of SIFs were assessed using three methods. First, the total antioxidant capacity of each SIF 

was assessed. Secondly, their ability to increase catalase activity, a hydrogen peroxide 

metabolizing enzyme, was determined as was the ability of SIFs to affect caspase activation 

through antioxidant processes. Finally, the mechanism of action for each SIF was 

established. 

1.7.3 Changes to the Aβ glycine structural motif effect aggregation 

 The third and final aim of this work tests the theory that increasing the periodicity 

of glycine in Aβ increases the aggregation rate. Embedded within APP is a series of 

repeated glycine residues that create a glycine zipper structural motif. Four mutations were 

selected for their ability to either increase or decrease the zipper and for continuing this as 

either a direct extension of the motif or shifted by one amino acid. Additionally, two 

extensions were selected for their similarities to two epidemiologically identified familial 

mutations. Mutants were initially assessed for their ability to modulate the entire 

aggregation pathway and their effect on aggregation kinetics were assessed. These 

aggregates were then collected and assessed for their morphology using electron 

microscopy, a change in aggregate conformation using a hydrophobicity assay, or change 

aggregate size via light scattering.  
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Figure 1.1. Aβ aggregation pathway. Aβ aggregates in a very distinctive pathway 
consisting of three distinct phases: lag phase where monomer begins to coalesce and form 
nuclei, a rapid growth phase where soluble species are rapidly growing, and an equilibrium 
phase where all species, including fibrils, exist in a metastable equilibrium. 
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Figure 1.2. Common familial Aβ mutations. Aβ mutations have been identified in a 
number of commonly occurring genetic cases of AD. The most common target is the region 
of the β-hairpin turn. Adapted from Benilova et. al [31]. 
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CHAPTER 2 

MATERIALS AND METHODS 

2.01 Materials  

Aggregation modulators were purchased from Indofine Chemical Company 

(Hillsborough, NJ). Lyophilized Aβ1-40 and Aβ1-42 were obtained from Peptide 2.0 

(Chantilly, VA) and AnaSpec, Inc. (San Jose, CA), respectively. 1,1,1,3,3,3-Hexafluoro-

2-propanol (HFIP) and thioflavin T were obtained from Sigma (St. Louis, MO). Dimethyl 

sulfoxide (DMSO) was purchased from EMD Biosciences (San Diego, CA). Uranyl acetate 

was obtained from Electron Microscopy Sciences (Hatfield, PA). Tricine and Lamelli 

sample buffers, gels and standards for electrophoretic separations, and membranes for 

protein transfer were purchased from Bio-Rad (Hercules, CA). Primary antibody 6E10 was 

purchased from Biolegend (San Diego, CA). Superdex 75 prep grade resin and secondary 

antibody ECL Mouse IgG, HRP-linked were purchased from GE Healthcare Life Sciences 

(Pittsburg, PA). Pierce™ SuperSignal™ West Pico PLUS chemiluminescent substrate was 

obtained from Thermo Scientific (Waltham, MA). 8-anilino-1-naphthalenesulphonic acid 

(ANS) was obtained from Research Organics (Cleveland, OH). Recombinant human tumor 

necrosis factor-α (TNF-α) was purchased from Promega (Madison, WI). Cell culture media 

components were obtained from MilliporeSIgma (St. Louis, MO). All other chemicals 

were purchased from VWR (Radnor, PA). 
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2.02 Preparation of Aβ1-40 Monomer  

Lyophilized Aβ1-40 was stored desiccated at -20°C prior to use and was prepared 

for experimentation as previously described [57]. In brief, the peptide was reconstituted in 

50 mM NaOH (2 mg/mL) and purified utilizing an AKTA FPLC (GE Healthcare, 

Piscataway, NJ) and a Superdex 75 HR 10/300 column (GE Healthcare) pretreated with 

bovine serum albumin (0.5 mg) as shown in Figure 2.1. Fractions of isolated monomer 

were eluted in 40 mM Tris-HCl (pH 8.0), and protein concentration was determined using 

a calculated extinction coefficient of 1450 M-1 cm-1 at 280 nm [34]. Purified monomer was 

stored for up to 2 days at 4°C before use. 

2.03 Aβ1-40 Monomer Aggregation 

The formation of Aβ aggregates was monitored within reactions containing 5 µM 

SEC-purified Aβ1-40 monomer and 0 µM (control) or 50 µM aggregation modulator. 

Reactions were prepared in 40 mM Tris-HCl (pH 8.0) containing 18.75 mM NaCl, 10 µM 

thioflavin T, and 1% (v/v) DMSO. Inclusion of thioflavin T, a fluorescent dye that 

specifically binds amyloid β-structure to yield a shifted, enhanced fluorescence, enabled in 

situ detection of aggregates. Reaction mixtures were loaded in triplicate onto a 96-well 

plate and covered with crystal clear sealing tape (Hampton Research, Aliso Viejo, CA) to 

prevent evaporation. To promote aggregation, reactions were agitated at 20°C on a Synergy 

2 Multi-Mode microplate reader (BioTek, Winooski, VT). Thioflavin T fluorescence 

measurements were acquired every 15 min (ex/em 440±30/485±20 nm) until plateau 

fluorescence was observed for all samples. 
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2.04 Modeling of Amyloid-β Aggregation 

Using GraphPad Prism 5 (GraphPad Software, San Diego, CA, USA) software, 

aggregation data exhibiting a standard three-phase growth (Figure 2.2A) were fit using 

equation 1, a typical sigmoidal growth curve [19,58]: 

 y = #
$%&'((*'+,..)

	  (1) 

where A is the extent of aggregation at equilibrium, k is the rate of aggregate formation 

during the growth phase, and t0.5 is the half-time to equilibrium. Using a least square 

(ordinary) fit and program identified initial values, the model was iterated until 

convergence. The lag time to aggregate formation was calculated from model parameters 

t0.5 and k as: 

 t234 = 	 t5.6 −
$
8∙:

  (2) 

Times and fluorescence values were normalized based on the calculated tlag and A 

for the control, respectively. Therefore, a value of 1 for either tlag or A represents no change 

from the control. Values less than 1 indicate an attenuation of the lag time and a reduction 

in the extent of aggregation, while values greater than 1 represent an extension of the lag 

time and an increase in the extent of aggregation. 

 To evaluate the kinetics for more advanced aggregation curves that have both a 

growth and a decay phase (Figure 2.2B), a new model was developed based on the 

foundational works of Fernandes and Caglar [59,60]: 

 y = ;
y<=>,>@ABCD									𝑓𝑜𝑟	𝑥 < 𝑡K@=C
y<=>,LMKNO									𝑓𝑜𝑟	𝑥 > 𝑡K@=C

	 (3) 

where 

 y<=>,>@ABCD =
#

$%&'((*'+,..)
		 (4) 
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and 

 y<=>,LMKNO =
#

$%&'((*'+,..)
+ RS#

$%&'T(*'+U..)
	 (5) 

While A, k and t0.5 represent the same features as described above, B represents the change 

in fluorescence after equilibrium is reached, c is the decay phase rate constant, and tcrit 

represents the time when maximum fluorescence is reached and the transition from primary 

equilibrium to decay occurs. Using the robust fit method and program identified initial 

values for A, k, t0.5, B, c, t1.5, and tcrit the model were used to iterate until convergence. 

Model values were constrained such that all values except B were positive and 0 < t0.5 < 2. 

tlag was calculated using equation 2 above while secondary lag was calculated with 

equation 6: 

 t&VW = 	 t$.6 −
$
8∙K

  (6) 

where tend represents the period in primary equilibrium where the decay phase begins. 

2.05 Transmission Electron Microscopy 

At terminal time points of aggregation reactions, samples were loaded onto 

Formvar/Carbon film 300 mesh copper grids (Electron Microscopy Sciences, Hatfield, PA) 

as previously described [46]. Briefly, samples were added to grids and allowed to adsorb 

for 5 min, excess solution was wicked away, and grids were air dried for 5 min. Loading 

was repeated 5 times. Samples were allowed to air dry thoroughly (15 min) before staining 

with 2% uranyl acetate (8 min). Excess stain was wicked away, and the grid was air dried 

overnight. Images were acquired using a JEM 1400 Plus Transmission Electron 

Microscope (120kV). 
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2.06 Aβ1-42 Oligomerization  

Oligomers were created as previously described [46]. Briefly, Aβ1-42 was dissolved 

in HFIP at -20°C for 1 h and aliquoted. HFIP was allowed to evaporate overnight and dried 

protein films were stored in desiccant at -80°C until use. Dried Aβ1-42 films were 

reconstituted in DMSO at a concentration of 5 mM. Protein was then further diluted with 

DMSO containing 10-fold molar excess of phenylethanoid or an equivalent volume of 

DMSO alone (control). Oligomerization was initiated via dilution in phosphate buffer 

(pH 7.4) containing 1 µM NaCl for final concentrations of 15 µM Aβ, 150 µM aggregation 

modulator, and 2.5% (v/v) DMSO. After 30 min, oligomerization reactions were either 

stabilized by the addition of 0.1% Tween 20 or else used immediately. 

2.07 Aβ1-42 Oligomer Resolution via SDS PAGE with Western blot  

As previously described, SDS PAGE with Western blot was used to resolve and 

quantify monomer and oligomeric aggregate species [46]. To assess monomer, trimer, and 

tetramer species, oligomerization end products were mixed 1:2 with Tricine sample buffer 

and loaded onto a 16.5% Mini-PROTEAN® Tris-Tricine Gel alongside Precision Plus 

Protein™ Dual Xtra Standard. Proteins were separated by electrophoresis (100 V) in a 

Mini-PROTEAN Tetra Cell (Bio-Rad). Following separation, proteins were transferred 

onto a 0.2 µm nitrocellulose membrane using a Trans-Blot® SD Semi-Dry Transfer Cell 

(Bio-Rad) (13 V, 12 min). 

To assess larger oligomers, oligomerization end products were mixed 1:1 with 

Lamelli buffer and loaded onto a 4-20% Mini-PROTEAN® TGX™ precast gel alongside 

Precision Plus Protein™ WesternC™ Standard. Electrophoretic separation in a Mini-



www.manaraa.com

 

15 
 

PROTEAN Tetra Cell occurred at 120 V before transfer (15 V, 15 min) onto 0.2 µm 

nitrocellulose membrane. 

Nitrocellulose membranes with transferred oligomers were blocked overnight at 

4°C with 5% non-fat dry milk in 12 mM phosphate buffer (pH 7.4) containing 0.1% Tween-

20. Membranes were then probed with 6E10 primary antibody (1:2,000), HRP-conjugated 

anti mouse secondary antibody (1:2,000), and for membranes with WesternC™ standard, 

Precision Protein StrepTactin-HRP conjugate (1:1,875). Membranes were placed in 

chemiluminescence enhancing solution for 2 min, and images were acquired using a Bio-

Rad ChemiDocTM XRS+ (Bio-Rad) imaging system. Densiometric analysis of aggregate 

species was conducted using Image Lab 5.2.1 (Bio-Rad) software. For larger oligomers, 

the presented intensity was determined within regions from 25–100 kDa or 100–250 kDa. 

For monomer, trimer, and tetramer species, individual band intensity was evaluated. 

Intensity results are expressed as a fraction of the control.  

2.08 Assessment of Aβ1-42 Oligomer Conformation using ANS Spectroscopy 

8-Anilino-1-naphthalenesulfonic acid (ANS) was resuspended at 50 mM in DMSO 

and stored at 4°C until use. Immediately prior to use, ANS was diluted to 50 µM using 

12 mM phosphate buffer (pH 7.4). This sub-stock was then used to dilute oligomers formed 

in either the presence or absence (control) of aggregation modulator to a final concentration 

of 1 µM Aβ, 10 µM aggregation modulator, and 50 µM ANS. Sample fluorescence was 

measured using a LS-45 luminescence spectrometer (Perkin–Elmer, Waltham, MA) 

(excitation = 350 nm, emission = 400-600 nm). Area under the curve (AUC) was then 

calculated by blank subtracting and integrating from 450-550 nm. 
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2.09 Cell Culture Maintenance 

Human neuroblastoma SH-SH5Y cells (American Type Culture Collection, 

Manassas, VA) were maintained in a 1:1 mixture of Dulbecco’s Modified Eagle’s Medium 

and Nutrient Mixture F-12 Ham Kaighn’s Modification Medium (DMEM/F12K) 

supplemented with fetal bovine serum (FBS) (10%), penicillin (100 units/mL), and 

streptomycin (100 µg/mL). Media was changed every 48-72 h. Upon reaching 70% 

confluency, cells were seeded for experimentation onto No. 1.5 glass coverslips, 22 x 20 

mm (MatTek, Ashland, MA) at a concentration of 1.5 x 106 cells/well. All cultures were 

maintained at 37°C in a humid atmosphere with 5% CO2. 

2.10 Cell Treatments 

Cellular treatments were applied 24 h following seeding onto coverslips. To 

examine the biological effect of modulator-induced changes in oligomerization, oligomers 

were formed in the presence of a 10-fold excess of phenylethanoid and added to cells at a 

final concentration of 10 nM Aβ1-42 and 100 nM aggregation modulator. To examine effects 

on intracellular antioxidant-associated processes, cells were treated simultaneously with a 

high concentration of modulator and oligomers formed in the absence of the modulator, 

using final concentrations of 10,000 nM modulator and 10 nM Aβ1-42. Finally, to examine 

the ability of anti-aggregation and intracellular antioxidant-associated processes to act 

simultaneously, cells were treated simultaneously with a high concentration of modulator 

and oligomers formed in the presence of modulator, using final concentrations of 10,000 

nM modulator and 10 nM Aβ1-42. All treatments were diluted into DMEM/F12K containing 

1% FBS. Treatments prepared with buffer equivalent served as a negative control; cells 
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treated with 1.5 U TNF-α or with oligomers formed in the absence of aggregation 

modulators served as positive controls.  

2.11 Assessment of Caspase Activation  

The Image-iT® LIVE Green Poly Caspases Detection Kit (Life Technologies), as 

previously described [46], was used to determine the effect of phenylethanoids on Aβ-

induced activation of caspases, including caspase-1, caspase-3, caspase-4, caspase-5, 

caspase-6, caspase-7, caspase-8, and caspase-9, as an indicator of apoptosis. Following 

24 h cellular treatments (37°C, 5% CO2) described above, media was removed, and cells 

were washed using 1% FBS, phenol red free media. Cells were then incubated (1 h, 37°C, 

5% CO2) with 200 µL of 1X fluorescent inhibitor of caspases (FLICA™) reagent prepared 

according to the kit. Cells were rinsed and incubated for 10 min with 0.1 mM Hoechst 3342 

(37°C, 5% CO2) in 1% FBS, phenol red free media. Cells were then washed before fixation 

using the included apoptosis fixative solution. Cells were mounted onto glass slides and 

imaged within 24 h using a Nikon Eclipse 80i fluorescent microscope (Melville, NY) 

equipped with a 40x objective, Nikon NIS-Elements 3.0. 

Five images were acquired for each slide with channels acquired for both Hoechst 

and FLICA™. As previously reported, results were quantified using a custom MATLAB 

(MathWorks, Natick, MA) function (Appendix A) to determine the percentage of caspase 

active cells in each image. Results are reported as the percentage of caspase active cells 

normalized to the control. A value of 1 represents no change in caspase activity as 

compared to treatment with Aβ oligomers alone, while a value of 0 represents the complete 

elimination of Aβ-induced caspase activity. 
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2.12 Oxygen Radical Antioxidant Capacity 

To measure antioxidant capacity of phenylethanoids, the OxiSelectTM Oxygen 

Radical Antioxidant Capacity (ORAC) assay (Cell BioLabs, San Diego, CA) was 

employed as previously described [46]. Samples were freshly dissolved in DMSO and 

diluted into 75 mM potassium phosphate (pH 7.0) for final concentrations of 1 µM and 

1% (v/v) DMSO. Trolox, a Vitamin E analog, served as the antioxidant standard. Samples, 

prepared in triplicate, or varying concentrations of Trolox (0 – 15 µM) were combined with 

a 6-fold (v/v) excess of fluorescein in a black-walled 96-well plate and incubated (37°C, 

30 min). Reactions were then mixed with 295 µM free radical initiator (2,2’-azobis(2-

methylpropionamidine) hydrochloride). To observe quenching of fluorescein by the 

resulting free radicals, fluorescein fluorescence (ex/em 485 ± 20/528 ± 20 nm) was 

measured at 1 min intervals for a period of 60 min using a Synergy 2 Multi-Mode 

microplate reader. The area under the fluorescence vs. time curve (AUC) was calculated 

and blank (0 µM Trolox) subtracted. Trolox samples were used to construct a standard 

curve of AUC vs. concentration, which was applied to convert phenylethanoid AUC to an 

ORAC value, or the equivalent Trolox concentration per molar concentration of sample. 

2.13 Total Antioxidant Capacity 

To measure the antioxidant capacity of SIFs, the QuantiChrom™ Antioxidant 

Assay Kit (BioAssay Systems, Hayward, CA) was used. Trolox standards (0-1000 µM) 

and SIFs (1.67 µM) were loaded in triplicate onto a clear bottom 96-well plate, diluted 

using Working Reagent, a solution of buffer with Cu2+ which can be reduced by 

antioxidants, and incubated (room temperature, 10 min). Absorbance was measured at 

570 nm on a Spectramax 190 Microplate Reader (Molecular Devices, Sunnyvale, CA) and 
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blank (0 µM Trolox) subtracted. TAC values were calculated by determining from the 

standard curve the equivalent Trolox concentration for each measured SIF absorbance.  

Values are reported as the equivalent Trolox concentration. 

2.14 Catalase Activity Assay 

The effect of SIFs on the activity of hydrogen peroxide reducing enzyme catalase 

was assessed using the Amplex™ Red Catalase Kit (Thermo Fisher, Waltham, MA). 

Catalase standards (0-250 mU/mL) were prepared in 0.1 M Tris-HCl. In parallel, samples 

containing 800 µM SIF were incubated with 125 mU/mL catalase (room temperature, 

5 mins). Samples and standards were incubated (room temperature, 30 min) with 20 µM 

H2O2 in a clear bottom 96-well plate. Samples and standards were diluted in half with 

50 µM Amplex™ Red and 0.5 U HRP and incubated (37°C, 30 min). Absorbance 

(560 nm) was blank subtracted (0 mU/mL catalase) to give the net absorbance. Using the 

catalase standard curve, net absorbance values for SIFs were converted into an equivalent 

catalase concentration and normalized to catalase alone (y=1). 

2.14 Dynamic Light Scattering 

To assess relative aggregate size, 10 µL of samples were loaded into a quartz 

cuvette and placed in a DynaPro MSX DLS instrument (Wyatt Technology Corporation, 

Santa Barbara, CA). Dynamic light scattering (DLS) allows for the nondestructive 

measurement of samples using correlative light scattering techniques and allows for 

detection of particles from 1-1000 nm. Instrument parameters were set to 50 acquisitions 

and values were averaged to obtain a hydrodynamic radii (RH). The average of these 

acquisitions was reported and represents the sample RH. 
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2.15 Statistical Analysis  

Data were Grubbs’ tested for outliers and are presented as the mean ± SEM. Using 

Minitab Express 1.5.1 (State College, PA), data were evaluated for normality and equal 

variances using the Anderson-Darling and Bartlett methods, respectively. Data passing 

both tests were analyzed using parametric methods. One-way analysis of variance 

(ANOVA) with Dunnett's test was employed to identify means significantly different from 

the control, while an unpaired two-tailed t-test was performed for comparisons between 

compounds. Data violating the underlying ANOVA assumptions were subjected to 

Kruskal-Wallis and Mann-Whitney tests to identify significance. For all methods, 

significance is defined as p < 0.05. 
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Figure 2.1. Purification profile of Aβ1-40 using size exclusion chromatography. Aβ 
monomer was denatured in NaOH and loaded onto an AKTA FPLC for size exclusion 
chromatography using Superdex 75 prep grade resin. Pre-formed aggregates are too large 
to enter the resin and elute early in the void volume, Monomer elutes second in the region 
identified with the blue box. Finally, any peptide fragments not removed by the 
manufacturer elute after the monomer, typically in the solvent volume. 
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Figure 2.2. Example aggregation curves. Monomer were aggregated in the presence of 
salt and a 2-fold excess of Thioflavin T. Sample fluorescence was measured every 15 
minutes and reported. While WT Aβ1-40 monomer aggregated in a traditional three phase 
growth curve (Panel A), glycine zipper mutants had 5 phase curves (Panel B). 

A

B
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CHAPTER 3 

OLIVE OIL PHENYLETHANOIDS ATTENUATE ALZHEIMER’S 
AMYLOID-β OLIGOMERS THROUGH MULTIPLE MECHANISMS

3.1 Introduction 

An association between adherence to the Mediterranean Diet (MeDi) and a lowered 

risk for Alzheimer’s disease (AD) has been identified via epidemiological evidence [61–

64]. AD brain is characterized by parenchymal deposits of insoluble plaques containing 

aggregated amyloid-β protein (Aβ). Ab aggregation occurs via a nucleation dependent 

pathway from non-toxic monomer to β-sheet rich fibrils that comprise plaques. Prior 

studies have highlighted the particular capacity of MeDi staple olive oil to attenuate AD 

pathology in mouse models, exemplified by a reduction in Aβ plaque load and an 

improvement in cognitive function [65,66]. Among olive oil’s chemical constituents, 

phenylethanoids have shown promise in disrupting biochemical interactions associated 

with a variety of medical conditions [67–70], including neurodegenerative diseases such 

as AD [48,71–76]. 

Of interest in AD, phenylethanoids oleuropein aglycone and oleocanthal attenuate 

Aβ toxicity by targeting Ab aggregates [48,75,76]. Although fibrillar Aβ plaques are a 

hallmark of the disease, oligomers, transient intermediates on the Aβ aggregation pathway, 

are acutely neurotoxic [10,23,77]. Among other detrimental effects of oligomers, the 

folding process creates a spontaneous burst of hydrogen peroxide [34,78]. Failure to 

remove or otherwise neutralize the resultant reactive oxygen species (ROS) can further 
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promote the Aβ aggregation process [36] or initiate the formation of toxic free radicals that 

induce apoptosis [35]. Targeting of the oligomerization process itself and counteracting 

Aβ-induced ROS via antioxidant capabilities present two potential mechanisms for 

phenylethanoids to attenuate AD pathogenesis. 

Some dietary components exhibit the ability to dually regulate Ab aggregation and 

mediate ROS-induced toxicity [46,47,52,79]. This ability is frequently attributed to two 

structural characteristics: the phenol ring and its hydroxyl functionalization. Both features 

are present in phenylethanoids. One hypothesis suggests that chemical compounds with 

hydroxylated phenol rings have the capacity to interfere with the π-π stacking necessary 

for formation and stabilization of Aβ aggregates [25]. Additionally, phenolic compounds 

are typically potent antioxidants capable of counteracting ROS [51,52,80].  

This study focuses on the three most abundant phenylethanoids in olive oil: 

oleuropein (OLE), hydroxytyrosol (TOH), and tyrosol (TYR) (Figure 1) [81]. During olive 

oil production, naturally occurring OLE is broken down into TOH by the crushing process 

and further degraded into TYR by the aging process. Previous studies have examined the 

effect of isolated OLE and metabolites on various aggregate species [48,66,71,76]. 

However, these studies have limited the scope of their investigation to a singular 

phenylethanoid or mechanism. In this study, OLE and its metabolites are explored for both 

their anti-aggregation and antioxidant capabilities. Results demonstrate that all three 

compounds, OLE, TOH, and TYR, shifted the equilibrium from small oligomers towards 

larger aggregates, and OLE additionally increased the extent of aggregation; however, 

these changes did not result in reduced oligomer toxicity. These compounds are all also 

capable antioxidants, and, through this mechanism, they modulated oligomer toxicity in a 
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manner proportional to their antioxidant capacity. Notably, these compounds exhibit their 

most prominent effect toward combating oligomer toxicity when shifted aggregation 

equilibrium and antioxidant capabilities were allowed to act in tandem, demonstrating their 

potential in AD treatment as multi-target small molecule natural therapeutics. 

3.2 Materials and Methods 

3.2.1 Phenylethanoid Preparation 

Phenylethanoids OLE, TOH, and TYR were purchased from Indofine Chemical 

Company (Hillsborough, NJ). Prior to use, 10 mM phenylethanoid were freshly dissolved 

in DMSO. 

3.2.3 Aβ1-40 Monomer Aggregation 

SEC-purified Aβ1-40 monomer (Section 2.02) was used to determine the effects of 

phenylethanoids on aggregation. 5 µM monomer was aggregated in the absence (control) 

or presence of 50 µM of OLE, TOH, or TYR and 10 µM Thioflavin T as described in 

Section 2.03. 

3.2.4 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was used to assess changes in aggregate 

morphology. The end product of Aβ monomer aggregation (Section 3.3.3) were loaded 

onto TEM grids, prepared via negative staining with uranyl acetate, and imaged as 

described in Section 2.06.  

3.2.5 Three-Stage Kinetic Modeling of Amyloid-β Aggregation 

 Aggregation data (Section 3.2.3) were fit to a three-phase growth curve as described 

in Section 2.04. Data for the control (0 µM phenylethanoid) were fit initially and all data 

points were normalized to the control amplitude and control lag time. Normalized data sets 
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were then fit. Therefore, a value of 1 for either tlag or A represents no change from the 

control. Values less than 1 indicate an attenuation of the lag time or a reduction in the extent 

of aggregation, while values greater than 1 represent an extension of the lag time or an 

increase in the extent of aggregation. 

3.2.6 Oligomer Resolution via SDS-PAGE with Western blot  

 Aβ1-42 oligomers were created in the presence of a 10-fold excess of either OLE, 

TOH, or TYR as described in Section 2.06 and stabilized with 0.1% Tween-80. Oligomers, 

as explained in Section 2.07, were electrophoretically resolved using SDS-PAGE and 

Western blot. Densiometric analysis of aggregate species was conducted and intensity was 

determined for monomer, trimer, and tetramer species a well as regions from 25–100 kDa 

or 100–250 kDa. Intensity results are expressed as a fraction of the control (oligomers 

formed in the absence of phenylethanoid).  

3.2.7 Cell Treatments 

SH-SY5Y human neuroblastoma cells were maintained and seeded as described 

(Section 2.09). 24 h after seeding, cells were treated with Aβ oligomers in one of three 

ways described in Section 2.10: either 1) 10 nM Aβ1-42 oligomers that were formed in the 

presence of 100 nM phenylethanoid, 2) 10,000 nM phenylethanoid and 10 nM Aβ1-42 

oligomer formed in the absence of phenylethanoid, or 3) 10,000 nM phenylethanoid and 

10 nM Aβ1-42 formed in the presence of 100 nM phenylethanoid. Media containing 1.5 U 

TNF-a served as the positive control.  

3.2.8 Assessment of Caspase Activation  

Treated cells (Section 3.2.7) were stained with the Image-iT® LIVE Green Poly 

Caspases Detection Kit (Life Technologies) as described in Section 2.11. Coverslips were 
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mounted onto glass slides and imaged within 24 h using a Nikon Eclipse Ti-E fluorescent 

microscope (Melville, NY) and Nikon NIS-Elements 3.0. Images were acquired in the blue 

(Hoechst) and green (FLICA™). Results were quantified using a custom MATLAB code 

which can be found in Appendix B and Appendix C. Results were reported as percentage 

of caspase active cells for each sample relative to the control.  

3.2.9 Phenylethanoid Antioxidant Capacity 

As described in Section 2.12, the ORAC value of phenylethanoids was determined 

using the OxiSelectTM Oxygen Radical Antioxidant Capacity assay. Trolox, a Vitamin E 

analog, served as the standard. Fluorescence was measured at until it returned to the 

baseline. The blank subtracted area under the fluorescence vs. time curve (AUC) was 

calculated and Trolox samples were used to construct a standard curve of AUC vs. 

concentration. Using this, phenylethanoid AUC was converted to an ORAC value (the 

equivalent Trolox concentration per molar concentration of phenylethanoid). 

3.3 Results 

3.3.1 Oleuropein Target Early Stages of Aggregation and Promote the Formation of 

Aβ1-40 Aggregates 

To examine the effect of phenylethanoids upon Aβ1-40 aggregation, SEC-purified 

monomer was aggregated in the presence of a 10-fold excess of phenylethanoid compound. 

Aggregation was monitored via inclusion of a 2-fold excess of thioflavin T, which displays 

enhanced fluorescence in the presence of amyloid β-sheet structure. As shown in 

Figure 3.2A, aggregation of Ab1-40 monomer exhibits a lag phase, followed by a period of 

exponential growth, and concluding in a plateau as equilibrium is reached. To determine 

the lag time to aggregate formation (tlag), the extent of aggregation at equilibrium (A), and 
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the rate of aggregate formation during the growth phase (k), aggregation data were fit to a 

three-stage kinetic model (Eqs. 1 and 2). While the presence of all three phenylethanoids 

led to some reduction in the lag time, only OLE significantly impacts the lag phase of 

aggregation (Figure 3.2A; Table 3.1). OLE also exhibits the most pronounced effect on the 

amplitude of the equilibrium plateau, increasing the extent of aggregation at equilibrium 

by 2-fold. All three phenylethanoids promote some increase in the rate of aggregate 

formation as compared to the control, but this effect fails to reach significance. 

Table 3.1. Effect of phenylethanoids on Aβ monomer aggregation a,b 

 tlag A k 

CONT 1.00 ± 0.00 1.00 ± 0.00 12.30 ± 4.00 

OLE 0.20 ± 0.04* 1.99 ± 0.23* 16.87 ± 6.20 

TOH 0.62 ± 0.26 0.96 ± 0.18 28.44 ± 3.19 

TYR 0.58 ± 0.25 1.13 ± 0.26 31.57 ± 13.19 

*p<0.05, compared to control. 
aMonomer aggregation experiments were performed as in Figure 3.2A. 
bParameters were derived from fitting normalized thioflavin T fluorescence 

vs. time data to a three-stage kinetic model (Eqs. 1 and 2; Figure 3.2A, 
solid lines) and are expressed as mean ± SEM, n = 4–5. 

 
To determine whether observed changes in aggregation kinetics were accompanied 

by alterations in fibril morphology, at terminal aggregation time points, samples were 

gridded and stained for transmission electon microscopy. Aggregation performed in the 

absence of phenylethanoids led to the formation of a network of filamentous structures 

exhibiting both single strands and bundled filaments. This morphology was unchanged by 

the presence of any phenylethanoid (Figure 3.2B). Together, these results demonstrate that 

phenylethanoid OLE targets the earliest aggregate species and can increase quantity of 

aggregates formed without changing aggregate morphology.  
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3.3.2 Phenylethanoids Reduce the Quantity of Aβ1-42 Oligomers Formed 

To further explore the observed effect of phenylethanoids on early stages of the 

aggregation process, the ability of these compounds to alter oligomerization of Ab1-42 was 

evaluated. Here, the longer isoform of Ab, which forms stable oligomers, was employed. 

Aβ1-42 oligomerization was initiated via the dilution of DMSO-solubilized monomer into 

aqueous buffer. Oligomers were formed in the presence and absence of phenylethanoids, 

and resulting oligomer size and quantity were assessed using SDS-PAGE with Western 

blotting to resolve oligomeric species. 

Separations performed using a 16.5% Tris-Tricine gel (Figure 3.3B) demonstrate 

that the presence of a 10-fold molar excess of each phenylethanoid reduces the quantity of 

trimeric and tetrameric oligomer (Figure 3.3D). In addition, a reduction in monomeric 

protein is observed (Figure 3.3E). The most pronounced reduction in small oligomer 

species occurs when oligomers are formed in the presence of TYR, which reduces trimer 

and tetramer by greater than 70% compared to the control (Figure 3.3D). In contrast, 

separations performed using a 4-20% Tris-glycine gel (Figure 3.3A) reveal that 

phenylethanoids exert a less pronounced effect on the formation of higher order oligomer 

species, with a significant reduction in 100-250 kDa oligomers observed only in the 

presence of TOH (Figure 3.3C). Together, these results establish the ability of 

phenylethanoids to target the earliest oligomeric aggregates. 

3.3.3 Phenylethanoid-modified Aβ1-42 Oligomers Fail to Exhibit Reduced Toxicity 

To assess the ability of phenylethanoid-induced changes in Ab1-42 oligomer size 

distribution to attenuate oligomer toxicity, caspase activity was evaluated following 

treatment of SH-SY5Y human neuroblastoma cells with Aβ1-42 oligomers. Alone, 10 nM 
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Aβ1-42 oligomers upregulate caspase activity by 40% (Figure C.1). Oligomers formed in 

the presence of a 10-fold excess of either OLE, TOH, or TYR exhibit some reduction in 

oligomer-induced caspase activity; however, this difference fails to reach 

significance (Figure 3.4). An equivalent concentration of phenylethanoids is nontoxic (data 

not shown). These results demonstrate that the observed phenylethanoid-induced changes 

in Ab1-42 oligomer size distribution do not lead to a significant alteration in their ability to 

induce toxicity. 

3.3.4 Phenylethanoids Can Attenuate Ab1-42 Oligomer Toxicity Through Antioxidant 

Mechanisms 

Previous studies have demonstrated the ability of antioxidants to combat Aβ-

induced cell death [46]. When antioxidant capacity of phenylethanoids was assessed using 

an ORAC assay, all three compounds were observed to be good antioxidants. Both OLE 

and TOH exhibit antioxidant capacity somewhat higher than that of Trolox, a vitamin E 

analog, while the antioxidant capacity of TYR is similar to Trolox (Figure 3.5A, open 

bars). The effect of these antioxidants toward Ab oligomer-induced toxicity was evaluated 

by assessing caspase activity within SH-SY5Y cells following simultaneous treatment with 

10 nM oligomers formed in the absence of phenylethanoid and 10,000 nM phenylethanoid, 

an antioxidant-capable concentration [82–84]. All three phenylethanoids demonstrate 

some ability to reduce Aβ oligomer-induced caspase activation, with the most pronounced 

effect observed for the strongest antioxidant, OLE (Figures 3.5A, hashed bars; 

Figure 3.5B), but these changes do not reach significance. The impact of phenylethanoid 

antioxidant action is illustrated, however, by the correlation between caspase activation 

and phenylethanoid antioxidant capacity (Figure 3.5C).  
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3.3.5 Phenylethanoids Exhibit a Multi-target Capability Toward Combating Aβ 

Oligomer-induced Toxicity 

 Because oligomer-modification and antioxidant capabilities affect two distinct 

therapeutic targets, phenylethanoids have the potential to act in a multi-target capacity to 

mitigate the deleterious effects of Aβ. To assess this potential multi-target capacity, caspase 

activity within SH-SY5Y cells was evaluated following simultaneous treatment with 10 

nM Aβ1-42 oligomers formed in the presence of phenylethanoid and an antioxidant 

dose (10,000 nM) of phenylethanoid.  

As shown in Figure 3.6, all three phenylethanoids reduce oligomer-induced caspase 

activity by more than 75% when acting simultaneously through oligomer-modification and 

antioxidant capabilities. For OLE, this reduction is similar in magnitude to the effect 

observed through antioxidant capacity alone. For TOH and TYR, this reduction is more 

pronounced than that observed with either oligomer-modification or antioxidant 

mechanisms alone. These results demonstrate the advantage of multi-target capabilities 

exhibited by phenylethanoids.  

3.4 Discussion 

Epidemiological studies demonstrate a correlation between adherence to the MeDi 

and incidence of AD [61–64]. Previous research has revealed that phenylethanoids 

oleuropein aglycone and oleocanthal, compounds found in MeDi staple olive oil, have the 

ability to target Aβ aggregates toward attenuating toxicity [48,75,76]. However, previous 

studies examining olive oil have ignored its diverse chemical makeup and biological 

capabilities, confining research to single compounds and mechanisms. The current study 

investigated the therapeutic potential of three major phenolic components of olive oil [85]. 
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Phenylethanoid oleuropein (OLE) and metabolites released during olive oil production 

hydroxytyrosol (TOH) and tyrosol (TYR) (Figure 3.1) were examined for their ability to 

modulate Aβ aggregation and oligomerization as well as to act as antioxidants to attenuate 

Aβ-induced cellular toxicity. Results indicate that while all compounds modulate 

oligomerization, only OLE exhibits a holistic effect on the aggregation process, yet this 

modulation does not translate to a reduction in oligomer-induced toxicity. OLE, TOH, and 

TYR are also good antioxidants, which possess antioxidant capacities that correlate with 

each compound’s mitigation of toxicity induced by pre-formed Ab oligomers. Ultimately, 

the strength of these phenylethanoids lies in their ability to act dually through both 

mechanisms to attenuate the physiological effect of Aβ oligomers. 

 The reported association between Aβ oligomers and cellular toxicity [10,77] 

prompted investigation of the effect of phenylethanoids on oligomerization. Analysis of 

early oligomeric aggregate species reveals that all three phenylethanoids reduce the 

quantity of trimer and tetramer species (Figure 3.3D). However, a corresponding reduction 

in monomer is also observed (Figure 3.3E), indicating that this effect does not stem from 

inhibition. The inability of these compounds to inhibit the overall aggregation 

pathway (Figure 3.2A; Table 3.1) further supports the propensity of phenylethanoids to 

modulate oligomerization by shifting the equilibrium towards larger aggregates. In 

contrast, phenylethanoids do not alter aggregate morphology (Figure 3.2B). In agreement 

with these results, a previous study examining the structurally similar phenylethanoid 

oleocanthal reported its capability to enhance the production of high order oligomeric 

species, shifting the equilibrium state towards larger aggregate species [76]. A reduction 

in aggregate formation, however, is not required to attenuate cellular toxicity [86]. 
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Numerous compounds, including phenylethanoid oleocanthal [76], peptide mimics [87], 

polyphenols [88], and other small molecule modulators [58] have the ability to enhance 

fibrillogenesis while also reducing neurotoxicity. In our study, however, the observed 

phenylethanoid-induced changes in size distribution of oligomeric species result in only a 

modest decrease in Ab-induced cellular toxicity (Figure 3.4).  

While phenylethanoid-modified oligomers do not exhibit reduced toxicity, these 

compounds are good antioxidants that, when acting through their antioxidant capacity 

alone, exhibit a correlation between compound ORAC value and reduction in Aβ oligomer-

induced toxicity (Figure 3.5). Powerful antioxidants can combat harmful ROS via 

induction of numerous cellular pathways [52]. Earlier studies with phenylethanoids have 

reported their ability to scavenge reactive nitrogen species as well as upregulate 

intracellular mechanisms to combat these species [89]. Additionally, our lab has 

demonstrated that antioxidant capability is a viable mechanism to attenuate Aβ-induced 

toxicity [46]. Indeed, previous studies have reported the benefits of antioxidant rich diets 

in countering AD pathophysiology [51,90].  

While single-target therapeutics are valuable in mediating the pathophysiology of 

AD, recent studies have illustrated the superior benefits of multi-target therapeutics [91–

93]. When acting dually through both antioxidant capabilities and modification of 

oligomerization, all three phenylethanoids, OLE, TOH, and TYR, significantly reduce Ab 

oligomer toxicity (Figure 3.6). In particular, for TOH and TYR the combination of effects 

is greater than that exhibited by either mechanism alone. Together, our results demonstrate 

that the ultimate strength of phenylethanoids lies not in an individual mechanism, but in 

their multi-target capabilities. 
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Figure 3.1. Phenylethanoid structures. Structures of the olive oil derived 
phenylethanoids, oleuropein (OLE), hydroxytyrosol (TOH), and tyrosol (TYR), studied for 
their effect on Aβ aggregation and Aβ-induced toxicity. 

  

hydroxytyrosol (TOH)

tyrosol (TYR)oleuropein (OLE)



www.manaraa.com

 

35 
 

 

Figure 3.2. Phenylethanoid OLE modulates Aβ aggregation. SEC-purified Aβ1-40 
monomer (20 µM) was incubated in 40 mM Tris-HCl (pH 8.0) in the absence (control, 
CONT, �) or presence of a 10-fold molar excess of oleuropein (OLE, �), hydroxytyrosol 
(TOH, £), or tyrosol (TYR, r). Samples were then diluted to a final Aβ concentration of 
5 µM with 10 µM thioflavin T and 18.75 µM NaCl and subjected to continuous agitation. 
A) Samples were monitored for thioflavin T fluorescence every 15 min until equilibrium 
was achieved. Data are normalized to the lag time and equilibrium extent of aggregation 
observed for the control, to yield relative time and relative fluorescence, and fit to a three-
stage kinetic model (Eqs. 1 and 2, solid lines). Results are representative of 4 independent 
experiments. B) At terminal time points, aggregates were gridded and imaged by 
transmission electron microscopy. Images are shown relative to a scale bar of 200 nm and 
are representative of 4-5 independent experiments. 
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Figure 3.3. Phenylethanoids modulate Aβ oligomerization. Aβ1-42 was solubilized 
(150 µM) in DMSO in the absence (CONT) or presence of a 10-fold molar excess of 
phenylethanoid. Oligomerization was initiated via subsequent dilution into 12 mM 
phosphate (pH 7.4) containing 1 µM NaCl for a final concentration of 15 µM Aβ. After 30 
min, oligomers were stabilized via the addition of Tween-20 (0.1%), resolved by SDS-
PAGE on either a 4-20% Mini-PROTEAN® TGX™ precast gel (panel A) or a 16.5% 
Mini-PROTEAN® Tris-Tricine Gel (panel B), and detected following Western blot using 
antibody 6E10. Images are representative of 4 independent experiments. Aggregate species 
were quantified for pixel volume intensity within size ranges of 25-100 kDa (panel C, solid 
bars) and 100-250 kDa (panel C, open bars) or within bands corresponding to trimeric 
species (panel D, solid bars), tetrameric species (panel D, open bars), or monomeric species 
(panel E). Results are normalized to the control, represented by a dashed line at 1. Error 
bars indicate SEM, n=4. *p<0.05, **p<0.01, ***p<0.001 versus control.
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Figure 3.4. Phenylethanoid-modified oligomers fail to significantly reduce Aβ 
oligomer-induced caspase activity. Ab1-42 oligomers formed in the absence (control) or 
presence of a 10-fold molar excess of phenylethanoid were diluted in media for a final 
concentration of 10 nM Aβ and used to treat SH-SY5Y human neuroblastoma cells. 
Following 24-h incubation, cells were assessed for caspase activity via 
immunocytochemistry and quantitative image analysis. A) Custom MATLAB functions 
were used to calculate the percentage of caspase active cells. Results are reported relative 
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to the control, represented by a dashed line at 1. Error bars indicate SEM, n=4. *p<0.05, 
**p<0.01 versus control. B) Images for input into MATLAB were acquired following 
staining of SH-SY5Y cells using Hoechst 33342 (blue) for nuclear detection, to enable 
quantification of the total number of cells, and FLICA™ (green) for detection of activated 
forms of caspase-1, -3, -4, -5, -6, -7, -8, and -9, to enable quantification of the number of 
caspase activated cells. Individual and merged images are shown relative to a scale bar of 
10 µm and are representative of 3 independent experiments. 
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Figure 3.5. Antioxidant capable phenylethanoids can reduce Aβ oligomer-induced 
caspase activity. An ORAC assay and Trolox standard were used to evaluate the 
antioxidant capacity of phenylethanoids diluted in 75 mM potassium phosphate (pH 7.0) 
(panel A, open bars). Results are reported as Trolox equivalent per molar concentration of 
phenylethanoid, and the Trolox standard is represented by a dashed line at 1. Error bars 
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indicate SEM, n=3. SH SY5Y human neuroblastoma cells were treated simultaneously 
with 10 nM Aβ1-42 oligomers formed in the absence of phenylethanoid and 10,000 nM 
phenylethanoid. Following 24-h incubation, cells were stained, imaged, and quantified as 
described in Figure 3.4. The percentage of caspase active cells (panel A, hashed bars) is 
reported relative to the control, represented by a dashed line at 1. Error bars indicate SEM, 
n=3. Visualization of nuclear material (Hoescht 33342, blue) and activated caspases 
(FLICA™, green) are shown alongside merged images (panel B). Images are shown 
relative to a scale bar of 10 µm and are representative of 3 independent experiments. The 
relationship between phenylethanoid antioxidant capacity and induced change in caspase 
activation is evaluated via linear regression (r2 = 0.9323) (panel C). 
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Figure 3.6. Phenylethanoids exhibit a multi-target capacity to reduce Aβ oligomer-
induced caspase activity. SH-SY5Y human neuroblastoma cells were treated 
simultaneously with 10,000 nM phenylethanoid and 10 nM Ab1-42 oligomers formed in the 
presence of a 10-fold molar excess of phenylethanoid. Following 24-h incubation, cells 
were stained, imaged, and quantified as described in Figure 3.4. The percentage of caspase 
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active cells (panel A) is reported relative to the control, represented by a dashed line at 1. 
Error bars indicate SEM, n=3-4. *p<0.05, **p<0.01, ***p<0.001 versus control. 
Visualization of nuclear material (Hoescht 33342, blue) and activated caspases (FLICA™, 
green) are shown alongside merged images (panel B). Images are shown relative to a scale 
bar of 10 µm and are representative of 3 independent experiments. 
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CHAPTER 4 

SOY ISOFLAVONES ACT VIA MULTIPLE DISTINCT PATHWAYS TO 
ATTENUATE AMYLOID-Β OLIGOMER INDUCED TOXICITY IN 

SH-SY5Y CELLS

4.1 Introduction 

Soy, an edible bean native to Asia, is a vegetable processed into tofu, soy milk, or 

other food additives [94]. While the exact benefit of soy have long been shrouded in 

controversy [95–98], studies have shown soy isoflavones (SIFs), a group of polyphenols 

found in abundance in soy, are promising nutraceuticals[99,100]. 

In diseases such as cardiovascular disease, prostate cancer, menopause, and breast 

cancer, SIF effectiveness has been attributable to their potent antioxidant capacity [101–

104]. And recent studies have demonstrated the ability of SIFs and polyphenols in general 

to ameliorate both the etiology and symptoms of neurodegenerative diseases [105–109]. 

Of particular interest in this work, SIFs have shown promise in combating the harmful side 

effects of amyloid-β, the protein associated with Alzheimer’s disease [110–113]. 

Alzheimer’s disease is the most common neurodegenerative disease and is 

characterized by the deposition of insoluble plaques of aggregated Aβ [114]. While plaques 

are often observed post-mortem, studies have shown that oligomers, a group of transient 

intermediates formed during aggregation, are acutely neurotoxic species [10,23,77,115]. In 

fact, oligomers have been shown to produce potent oxidizing species which are theorized 

to contribute significantly to the disease state. Recent studies have expounded on the 
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benefits on polyphenols for their anti-aggregation potential as well as their ability to 

directly counteract toxic ROS via their antioxidant capacities [50,54,80]. While SIFs have 

been investigated as it relates to AD, mechanistic insight has been poorly studied. 

The present study looks at two major SIF constituents, genistin (OGEN) and 

daidzin (ODEN), as well as their primary metabolites genistein (GEN) and daidzein 

(DEN), to determine their holistic effects on Aβ1-42 oligomers (Figure 4.1A). Results 

demonstrate that each SIFs exhibits protective effects when both present during Aβ1-42 

oligomerization and allowed to activate cellular responses. OGEN and GEN, SIFs 

possessing enhanced hydroxylation, were more effective than ODEN and DEN. Although 

aggregate morphology was largely unchanged, all four SIFs reduced lag time to aggregate 

formation, three SIFs (OGEN, ODEN, and DEN) increased aggregation rate, and the two 

glycosylated SIFs (OGEN and ODEN) significantly enhanced the extent of aggregation. 

Contrastingly, there was no holistic effect on oligomeric size, distribution, or conformation. 

Ultimately, the resulting oligomer associated caspase activation was unaffected. In our 

study, we found SIFs are good antioxidants, and several SIFs (GEN, ODEN, and DEN) 

can increase the relative activity of catalase, a hydrogen peroxide reducing enzyme. Only 

DEN-induced antioxidant responses had an effect on oligomer associated caspase 

activation. This study ultimately revealed that SIF-associated caspase activation observed 

initially can be attributed to a unique mechanism. ODEN acts equally well through either 

its anti-aggregation effects or as an antioxidant, while OGEN has a clear additive effect. 

DEN is dominated by one mechanism: it modulates toxicity similar to its antioxidant 

capacity. The most interesting SIF, however, is GEN which exhibits a synergistic response 

between mechanisms. 
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4.2 Materials and Methods 

4.2.01 Materials 

Soy isoflavones genistin (OGEN), genistein (GEN), daidzin (ODEN), and daidzein 

(DEN) were purchased from Indofine Chemical Company (Hillsborough, NJ). All SIFs 

were freshly dissolved in DMSO immediately prior to use. 

4.2.02 Aβ1-42 Oligomerization 

Aβ1-42 oligomers were first prepared as described in Section 2.06. DMSO-

solubilized SIFs were added to Aβ to obtain a 10:1 ratio of SIF:Aβ. An equivalent volume 

of DMSO alone served as the control. Resultant oligomers were then diluted in cell culture 

media, diluted with 0.1% Tween-80, or otherwise used immediately. 

4.2.03 Cell Treatment 

Cell were maintained and seeded as described in Section 2.09. Cell treatments, as 

described in Section 2.10, were either with 1) 10,000 nM SIF and 10 nM oligomers formed 

in the presence of 100 nM SIF, 2) 10 nM oligomers formed in the presence of 100 nM SIF, 

or 3) 10,000 nM SIF and 10 nM oligomers formed in the absence of SIF. Alternatively, 

cells were treated with 1.5 U TNF-a to serve as the positive control 

4.2.04 Assessment of Cellular Apoptosis 

After a 24 h treatment (Section 4.2.03), cells were stained and imaged as described 

in Section 2.11 using the Image-iT® LIVE Green Poly Caspases Detection Kit (Life 

Technologies). Cells were imaged within 24 hours using a using a Nikon Eclipse Ti-E 

fluorescent microscope (Melville, NY) and Nikon NIS-Elements 3.0. Images were 

acquired in the two channels: Hoechst (blue) and FLICA™ (green). Results were 

quantified using a custom MATLAB code (Appendix B and C) and results were reported 
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as percentage of caspase active cells. The relative percentage for each image was averaged 

across slides and normalized to the control (Aβ alone). A value of 1 represents no change 

in caspase activity as compared to Aβ alone while a value of 0 represents the complete 

reduction of activity. 

4.2.05 Aβ1-40 Monomer Aggregation 

Monomer was aggregated as described in Section 2.03. Using SEC-purified 

monomer (Section 2.02), Aβ1-40 was aggregated in the presence of a 10-fold excess of SIF. 

Final reaction samples contained 5 µM Aβ1-40 monomer, 50 µM phenylethanoid, 18.75 mM 

NaCl, and 10 µM ThT, a dye that excites in the presence of β-structure. Samples were 

loaded in triplicate onto a 96-well plate, sealed to prevent evaporation, and continuously 

agitated. Fluorescence was monitored until a plateau was reached for all samples.  

4.2.06 Transmission Electron Microscopy Imaging 

At terminal time points, aggregate morphology was examined using TEM as 

described in Section 2.05. Aggregates (Section 4.2.05) were loaded on to a copper grid and 

negatively stained with uranyl acetate. Images were acquired using a JEOL 1400 Plus 

Transmission Electron Microscope accelerated at 120kV. 

4.2.08 Kinetic Modeling 

 The effect of SIFs on Aβ aggregation kinetics was assessed as described in Section 

2.04. The fluorescence data for the control (Section 4.2.05) were fit to Equations 1 and 2. 

Using the obtained values for the amplitude (A) and lag time to aggregate formation (tlag), 

data for SIFs were normalized to the relative plateau and relative time. A value less than 1 

represents a decrease compared to the control where as a value greater than 1 represents an 

increase. 
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4.2.09 Assessment of Oligomer Size and Distribution 

To characterize the effects of SIFs on Aβ1-42 oligomer size and distribution, 

oligomers (Section 2.06) were resolved using SDS-PAGE with Western blot as described 

in Section 2.07. Densiometric analysis was conducted over monomer, trimer, and tetramer 

bands for each as well as oligomer presenting regions from 250–100 kDa and 100–25 kDa. 

Results are expressed as the intensity fraction compared to the control. A value of 1 

represents no change from the control and a value less than 1 represents a reduction in the 

quantity of oligomers. 

4.2.10 Assessment of Aβ1-42 Oligomer Conformational Changes Using ANS 

Spectroscopy 

 The effect of SIFs on Aβ oligomer conformation was assessed using 8-Anilino-1-

naphthalenesulfonic acid (ANS) as described in Section 2.08. Oligomers formed in the 

presence of SIFs were diluted in ANS to a final concentration of 1 µM oligomer, 10 µM 

SIF (or DMSO for the control), and 50 µM ANS. Sample fluorescence was measured from 

400-600 nm. Integrated area under the curve was calculated from 450-550 nm. Blanks, 

samples containing only SIF (or DMSO) and ANS, were also obtained for each sample. 

Results were then blank subtracted and normalized to the control (oligomers alone). 

4.2.11 Total Antioxidant Capacity 

As described in Section 2.13, antioxidant capabilities were assessed using the 

QuantiChrom™ Antioxidant Assay Kit. Briefly, Trolox standards were prepared from 

1000 µM to 0 µM and loaded onto a clear bottom 96-well plate. SIF samples were diluted 

to 1.33 µM using Working Reagent and incubated at room temperature for 10 mins. 

Absorbance was then measured at 570 nm on a Spectramax 190 Microplate Reader 
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(Molecular Devices, Sunnyvale, CA). A Trolox standard curve was then constructed by 

plotting absorbance against concentration and TAC values (µM Trolox equivalencies) were 

calculated by normalizing SIF samples to an equivalent of Trolox alone (TAC = 1). 

4.2.12 Catalase Activity Assay 

The effect of SIFs on catalase was assessed using the Amplex™ Red Catalase Kit 

as described in Section 2.14. 800 µM SIF was incubated with 125 mU/mL catalase before 

dilution with 40 µM H2O2 in 96-well plate. Following a 30 min incubation at room 

temperature, samples were further diluted to 100 µM SIF and 31.25 mU/mL catalase using 

100 µM Amplex™ Red and 1U HRP and incubated for 30 mins at 37°C. Absorbance was 

measured the net absorbance was reported by subtracting the sample or standard from the 

blank (0 mU/mL). Using the catalase standard curve, SIF values were then converted into 

an equivalent catalase concentration and normalized to catalase alone. Results are reported 

as a fraction of control. A value of 1 represents no increase in activity from the control 

while a value greater than 1 represents an increase in catalase activity. 

4.3 Results 

4.3.1 SIFs attenuate Aβ1-42 oligomer-induced toxicity 

SH-SY5Y human neuroblastoma cells were treated concurrently with 10,000 nM 

SIF and 10 nM Aβ1-42 oligomers formed in the presence of a 10-fold molar excess of SIF. 

Following 24-h incubation, cells were evaluated for caspase activity via 

immunocytochemistry with quantitative image analysis. As shown in Figure 4.1B-C, the 

upregulation of caspase activity induced by Aβ1-42 oligomers (Appendix D, Figure D.5) 

was significantly attenuated by all four SIFs (OGEN, GEN, ODEN, and DEN). SIF 

effectiveness ranges from a 60% reduction in caspase activity (DEN) to a 90% reduction 
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(OGEN). While glycosylated compounds (OGEN and ODEN) exhibit a slightly greater 

ability to decrease oligomer-induced caspase activation than the non-glycosylated 

compounds (GEN and DEN), this difference did not reach significance. However, a 

significant difference in reduction of oligomer-induced caspase activation is observed 

between hydroxylation states, indicating that the presence of a hydroxyl on the 5 position 

increases effectiveness. 

4.3.2 SIFs alter Ab1-40 aggregation kinetics 

To explore inhibition of aggregation as a mechanism of SIF protection from Ab 

oligomer induced toxicity, SEC purified Aβ1-40 monomer was agitated in the presence of a 

10-fold excess of SIF (Figure 4.2A), a 2-fold excess of thioflavin T to facilitate detection 

of aggregates, and 18.75 µM NaCl to promote aggregation. All kinetic curves exhibited a 

characteristic lag period, subsequent exponential growth, and a plateau in thioflavin T 

fluorescence as equilibrium is reached (Figure 4.2A).  Accordingly, data were fit to a 

sigmoidal growth curve (Eqs. 1 and 2, Figure 2A solid lines) to determine the lag time to 

aggregate formation (tlag), the rate of aggregate formation during the growth phase (k), and 

the extent of aggregation at equilibrium (A) (Figure 4.2B). All SIFs significantly reduced 

tlag, and three SIFs (OGEN, GEN, and DEN) increased k.  However, only glycosylated SIFs 

(OGEN, ODEN) had a significant effect on A, increasing the extent of aggregation by 

greater than 2-fold. 

At terminal time points, aggregates were gridded and imaged via TEM to assess 

morphological changes (Figure 4.2C). Images of control aggregates, formed in the absence 

of SIFs, reveal a typical Aβ1-40 fibril morphology: fibers of varying lengths and sizes that 

exhibit both lateral and longitudinal growth. Aggregates formed in the presence of ODEN, 
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OGEN, and GEN exhibit a similar morphology. In contrast, DEN-modified aggregates are 

more densely packed than control fibrils.  

4.3.3 GEN and ODEN impact size distribution of Aβ1-42 oligomers 

The effect of SIFs on formation of early aggregate species was studied using Aβ1-42 

oligomers formed in the absence (control) or presence of a 10-fold molar excess of each 

SIF via dilution from DMSO into aqueous buffer. Resulting oligomers were resolved using 

SDS-PAGE and Western blot, with resolution of 25-250 kDa oligomers on a 4-20% Tris-

glycine gel (Figure 4.3A) and resolution of monomeric, trimeric, and tetramer species on 

a 16.5% Tris-tricine gel (Figure 4.3B). Densiometric analysis of Western blots reveals a 

significant effect on the formation of 100-150 kDa oligomers only by GEN and on 25-100 

kDa oligomers only by ODEN (Figure 4.3C). In  contrast, none of the SIFs tested alter the 

formation of tetrameric or trimeric oliogmers (Figure 4.3D) or the quantity of residual 

monomer (Figure 4.3E). 

4.3.4 SIFs have negligible effect on Aβ1-42 oligomer conformation 

To investigate the effect of SIFs on the conformation of early Ab aggregates, Ab1-42 

oligomers formed in the absence (control) or presence of a 10-fold molar excess of SIF 

were examined for their abiilty to bind ANS, a fluorescent molecular dye that excites when 

bound in proximity to hydrophobic surfaces. Ab1-42 oligomers formed in the presence of 

ODEN (Figure 4.4) exhibit some increase in ANS fluorescence, indicative of an 

enhancement of surface hydrophobicity; however, this change fails to reach significance. 

Oligomers formed in the presence of OGEN and DEN exhibit a slight, but insignificant, 

reduction in ANS fluorescence, while oligomers formed in the presence of GEN exhibit an 

ANS fluoescence identical to that of control oligomers. 
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4.3.5 Aβ1-42 oligomers formed in the presence of SIFs are unaltered in toxicity 

To explore the effect that SIF-induced modifications of oligomer size and 

morphology may have upon toxicity, SH-SY5Y human neuroblastoma cells were treated 

with 10 nM Aβ1-42 oligomers formed in the absence (control) or presence of a 10-fold molar 

excess of SIF. After 24 h, caspase activity was evaluated via immunocytochemistry with 

quantitative image analysis (Figure 4.4, solid bars). Oligomers formed in the presence of 

each SIF exhibit a slight reduction in toxicity, with the most pronounced change observed 

for ODEN.  However, these differences do not reach significance.  

4.3.6 SIFs are potent antioxidants 

To assess the intrinsic antioxidant capabilities of SIFs, their TAC was measured, 

Results, shown in Figure 4.5A (white diamonds), indicate that SIFs are equivalent or better 

antioxidants compared to vitamin E analog Trolox (dashed line at 1). While ODEN and 

DEN are good antioxidants with a TAC similar to Trolox, OGEN and GEN were 

significantly stronger antioxidants. Additionally, OGEN and GEN were significantly better 

antioxidants than ODEN and DEN, respectively. 

As an alternative to intrinsic antioxidant capabilities, compounds can also exert an 

antioxidant effect by activating intracellular antioxidant processes. To examine this 

possibility, the ability of SIFs to activate catalase, a hydrogen peroxide catalyzing enzyme, 

was evaluated using the Amplex™ Red Catalase Kit. GEN, ODEN, and DEN all 

significantly increase catalase activity, with the most pronounced difference observed for 

GEN and DEN (Figure 4.5A, black diamonds).  In contrast, catalase activity is unchanged 

by the presence of OGEN.  
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4.3.7 Antioxidant DEN reduces Aβ1-42 oligomer-induced toxicity 

To explore the effect that SIF antioxidant actions have upon Aβ1-42 oligomer-

induced caspase activation, SH-SY5Y human neuroblastoma cells were cultured in the 

presence of 10,000 nM SIF and 10 nM Aβ1-42 formed in the absence of SIF. Following 24-

h treatment, cells were evaluated for caspase activity via immunocytochemistry and 

quantitative image analysis (Figure 4.5B). OGEN (p = 0.0518) and ODEN (p = 0.0513) 

exert a slight but insignificant effect on Ab oligomer-induced caspase activation. The 

presence of DEN, however, significantly attenuated oligomer-induced caspase activation 

by greater than 60%.  

4 Discussion 

For decades, soy isoflavones (SIFs) have been mistakenly labeled as dangerous 

[116,117]. Initially investigated as hormone replacements [116,118], SIFs have taken on a 

second life as therapeutics for a variety of neurological conditions [102,104,119,120] and 

studies show a strong neuroprotective effect [113,121–123] . This study assessed the effect 

of the four most abundant SIFs, genistin (OGEN), genistein (GEN), daidzin (ODEN), and 

daidzein (DEN), on their ability to attenuate Aβ1-42 oligomer-induced toxicity. 

Additionally, it attempted to determine whether each SIF acted through anti-aggregation 

effects, cellular processes, or some combination of both. Our results showed that all four 

SIFs reduce toxicity in our model when both mechanisms are allowed to act in concert. 

While all four SIFs impacted some combination of aggregation lag time and rate, only 

glucosides OGEN and ODEN impacted the extent of aggregation. And, while some SIFs 

had modest effects on oligomer size and distribution, these anti-aggregation effects had no 

impact on aggregate toxicity. More importantly, and in agreement with published 
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works [102,104,121], their antioxidant potential was strong with two SIFs (OGEN and 

GEN) significantly increasing antioxidant capabilities. Additionally, results indicate 

several SIFs (GEN, ODEN, and DEN) increase catalase activity, an enzyme responsible 

for hydrogen peroxide metabolism. DEN, the SIF with the greatest increase in catalase 

activity, effectively modulated caspase activation similarly to our initial findings . 

Ultimately, we determined that each SIF acts in a different manner (Figure 4.6). While 

DEN acts through its antioxidant effects, OGEN (additive) and ODEN (neither dominates) 

act through a singular mechanism. GEN, uniquely, exhibits synergistic potential. 

In line with previous in vitro studies [108,124,125], SIFs (Figure 4.1A) exhibited a 

50-80% reduction in toxicity (Figure 4.1B - C). However, it unclear if this was due to their 

anti-aggregation or widely cited antioxidant effects. Our initial goal, therefore, was to 

identify the mechanism for each SIF: either anti-aggregation effects or interaction with 

intracellular processes. With little exception, previous aggregation studies have looked at 

the effect of one of more SIFs in the presence of cells [111,122,125,126]. Therefore we 

focused directly on protein-SIF interaction and show the four SIFs significantly reduce the 

lag time and three of the four (OGEN, GEN, and DEN) have an effect on the rate. Only 

glycosides ODEN and OGEN have an effect on the extent of aggregation (Figure 4.2A-B) 

and SIFs have minimal effect on morphology (Figure 4.2C). This result is not without 

precedence. Studies have suggested that Aβ is able to intercalate glucose into its structure, 

enhancing aggregation [127]. This phenomena has been further confirmed in studies of 

type 2 diabetes where patients have an enhancement of the extent of aggregation [128,129].  

However, our observed aggregation enhancement did extend to oligomers. In fact, 

only a slight effect was observed in either oligomer quantity (Figure 3C) or conformation 
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(Figure 4.4A, checkered bars) with the largest oligomeric response a conformational shift 

with ODEN. While polyphenols are typically associated with neuroprotective benefits, this 

is not necessarily the case for all polyphenols [46,47]. Unsurprisingly, the anti-aggregation 

effects of SIFs had no effect on toxicity (Figure 4.4A, solid bars) Taken together, these 

results are indicative of a lack of significant SIF-Aβ interaction. 

Previous studies have correlated SIFs antioxidant capacities with their ability to 

attenuate oxidative stress and mitochondrial dysfunction induced via Aβ1-42 aggregates 

[111,121,125]. Similarly, our study showed that SIFs were good antioxidants  (Figure 5A, 

white diamonds). While only OGEN and GEN were significantly better antioxidants, 

ODEN and DEN possess an antioxidant capacity as good a vitamin E analog Trolox. 

Previous studies from Lee et. al [130] also showed indistinguishable antioxidant capacities 

between aglycon SIFs and their corresponding glucosides. Some in vivo studies have also 

shown an increase in catalase response when a SIF containing mixture is used. [131] 

Additionally, Kampkötter et. al [132] presented a second potential antioxidant target: DEN 

catalase, an enzyme responsible for the metabolism of hydrogen peroxide. Likewise, our 

results indicate three SIFs, GEN, ODEN, and DEN, have the ability to increase catalase 

activity (Figure 4.5B, black diamonds). DEN, additionally is both a very good antioxidant 

and able to upregulate catalase activity. 

Aside from DEN, our results have still not explain the sharp reduction in SIF 

toxicity observed in Figure 4.1B-C: the motivation for the study. However, when the 

toxicity studies are compared (Figure 6A), we see the true potential of each SIF. OGEN 

has a clear additive effect: when SIFs are allowed to modulate both aggregation and 

intracellular processes, the effect is roughly equal to the combination of the two. ODEN, 
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however, has no preference for either mechanism. DEN, likely thanks to its antioxidant 

capacity and interaction with catalase, acts through antioxidant effects alone.  

GEN, interestingly, has a synergistic response to Aβ1-42 oligomer-induced toxicity. 

While these our study looked at two antioxidant processes options, there are many 

molecular targets for SIFs to act upon in vivo. GEN, for instance, has the ability to act 

through NrF-2 [125]. Additionally, studies have shown GEN can modulate downstream 

molecular targets such as the AD-associated tau protein [122].  

Kampferol (KAE), a flavone structurally similar to GEN (Figure 6B), has shown 

comparable response to Aβ1-42 oligomer-induced caspase activation. While studies have 

shown KAE’s propensity to enhance fibril formation [133], a recent study from our group 

has shown that, just like GEN, KAE possesses a unique synergistic effect between anti-

aggregation effects and antioxidant effects to reduce toxicity [46]. This is an effect not 

observed in either structural analog DEN or OGEN. 

Ultimately, our results continue to show SIFs exhibit potential for the treatment of 

AD. However, it isn’t entirely attributable to their widely publicized antioxidant power. 

Instead our results found that SIFs have many effect on the Aβ1-40 aggregation process but 

no effect on Aβ1-42 oligomers. Instead, SIFs modulate toxicity through a variety of 

mechanisms: while DEN uses antioxidant means to ameliorate toxicity ODEN acts equally 

as well through anti-aggregation and antioxidant means. ODEN acts through the 

combination of anti-aggregation plus antioxidant effects. Finally, GEN creates a 

synergistic effect on Aβ toxicity with a reduction greater than either of the individual 

components. Ultimately, this study shows that SIFs are promising multi-target therapeutic 

targets to ameliorate Aβ induced cell response.  
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Figure 4.1. SIFs reduce Ab toxicity. A) Four SIFs were studied for their mechanistic 
effects on Aβ toxicity, including genistin (OGEN) and daidzin (ODEN) as well as their 
aglycon metabolites genistein (GEN) and daidzein (DEN). B) SH-SY5Y human 
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neuroblastoma cells were treated simultaneously with 10,000 nM SIF plus 10 nM Ab1-42 
oligomers formed in the presence of 100 nM SIF. After 24 h, cells were stained and imaged 
using FLICATM to detect active caspases and Hoechst 33342 to detect nuclei. Images were 
quantified using a custom MATLAB script to determine the fraction of caspase active cells 
(gray bars) relative to treatment with 10 nM Aβ1-42 oligomers alone (control, dashed line 
at 1). Error bars indicate SEM, n=4. *p<0.05, **p<0.01, ***p<0.001 versus control. 
†p<0.05 between isoflavones. C) Images of FLICATM fluorescence, representative of 4 
independent experiments, are shown relative to a scale bar of 10 µM. Coinciding Hoescht 
33342 images can be found in Appendix D, Figure D.2.  
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Figure 4.2. SIFs modulate Aβ aggregation. SEC-purified Aβ1-40 (20 µM) was incubated 
in 40 mM Tris-HCl (pH 8.0) in the absence (CONT, control, ✷) or presence of a 10-fold 
excess of genistin (OGEN, n), genistein (GEN, £), daidzin (ODEN, �), or daidzein 
(DEN,  �). Samples were then diluted to a final concentration of 5 µM Aβ, 10 µM 
thioflavin T, and 18.75 µM NaCl. A) Samples were subjected to constant agitation and 
fluorescence was measured every 15 min until equilibrium was achieved. Aggregation 
curves shown are representative data from 4-5 independent experiments. Data were 
normalized to the CONT fit on a typical sigmoidal curve (Eq. 1, solid line). B) SIF samples 
were then normalized to the lag (Eq. 2) and plateau equilibrium and data for each sample 
was fit to the three-phase growth curve. C) At terminal time points, aggregates were 
gridded and imaged at 20,000 X (top, scale bar = 200 nm) or 30,000 X (bottom, scale 
bar = 100 nm). Error bars indicate SEM, n=4-5. *p<0.05, **p<0.01 versus control. 
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Figure 4.3: Effect of SIFs on Aβ oligomerization. Aβ1-42 was solubilized in DMSO alone 
(CONT) or in the presence of a 10-fold molar excess of SIF and diluted to 15 µM using 
12 mM phosphate buffer (pH 7.4) containing 1 µM NaCl. Following 30-min incubation, 
oligomers were stabilized via Tween-20 (v/v 0.1%) and resolved using SDS-PAGE on 
either a 4-20% Tris-glycine gel (panel A) or a 16.5% Tris-Tricene gel (panel B). Aggregate 
species were detected following Western blot using 6E10 antibody and densiometrically 
quantified within the size ranges of 100-250 kDa (panel C, horizontal hashed bar) and 25-
100 kDa (panel C, vertical hashed bar) or within bands corresponding to trimeric (panel D, 
horizontal hashed bar), tetrameric (panel D, vertical hashed bar), and monomeric species 
(panel E, horizontal hashed bar). Results are normalized to the control, represented by a 
dashed line at 1. Error bars indicate SEM, n=3. *p<0.05 versus control. 
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Figure 4.4: Effect of SIFs on Ab oligomer conformation and the impact of SIF anti-
aggregation capabilities upon Ab oligomer toxicity. Aβ1-42 oligomers were formed as 
described in Figure 3 in the absence (CONT) or presence of 10-fold excess SIF. Oligomers 
were diluted to 1 µM Aβ and 10 µM SIF in the presence of 50 µM ANS. ANS fluorescence 
was integrated from 450-550 nm and blank (50 µM ANS, 10 µM SIF) subtracted 
(checkered bars). Results are normalized to the control, indicated by a dashed line at 1. 
ANS emission scans are presented in Appendix D, Figure D.1. Oligomers were also diluted 
to 10 nM in cell culture media and used to treat SH-SY5Y human neuroblastoma cells. 
After 24-h, cells were stained, imaged, and quantified to determine the percentage of 
caspase active cells (solid bars), as described in Figure 4.1. Results are normalized to the 
control, indicated by a dashed line at 1. Error bars indicate SEM, n=3-4. FLICATM and 
Hoescht images are presented in Appendix D, Figure D.3. 
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Figure 4.5: SIF antioxidant capabilities and the associated impact upon Ab oligomer 
toxicity. A) To assess intrinsic antioxidant capabilities, the TAC for each SIF was 
measured using the QuantiChrom™ Antioxidant Assay Kit. Results are reported as an 
equivalent concentration of the Trolox standard (white diamond bars). The Trolox standard 
is indicated by a dashed line at 1. Error bars indicate SEM, n=4. *p<0.05. Alternatively, to 
assess the ability of SIFs to activate intracellular antioxidant processes, SIF-induced 
changes in the activity of hydrogen peroxide metabolizing enzyme catalase were measured 
using the AmplexTM Red Catalase Kit when 125 µM catalase was incubated in the presence 
of 800 µM SIF and 40 mM H2O2. Results are reported as a fold-increase in catalase activity 
(black diamond bars) relative to the activity of 125 µM catalase alone, indicated by a 
dashed line at 1. Error bars indicate SEM, n=4. *p<0.05. B) Oligomers formed as described 
in Figure 4.1 in the absence of SIFs were diluted to 10 nM in cell culture media 
concurrently with addition of 10,000 nM SIF and used to treat SH-SY5Y human 
neuroblastoma cells. After 24-h, cells were stained, imaged, and quantified to determine 
the percentage of caspase active cells (solid bars), as described in Figure 4.1. Results are 
normalized to caspase activity for cells treated with 10 nM Aβ1-42 oligomers alone (control, 
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dashed line at 1). Error bars indicate SEM, n=3. *p<0.05. FLICATM and Hoescht images 
are presented in Appendix D, Figure D.4. 
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Figure 4.6: SIFs act through unique mechanisms. SIFs were tested for their ability to 
act through anti-aggregation effects (solid bars), cellular processes (open bars) or the 
combination of the two (grey bars). Results shown previously were converted to a percent 
reduction where 0 is equivalent to no change from the control and 100% is a complete 
elimination of caspase activity. While DEN acted primarily through antioxidant potential, 
ODEN, GEN, and OGEN had unique mechanisms. B) A comparison between GEN and 
KAE, two structurally similar compounds that both attenuate Aβ induced toxicity through 
synergistic means. Error bars indicate SEM, n=4. *p<0.05, **p<0.01 versus control. 
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CHAPTER 5 

ASSESSMENT OF THE ROLE OF THE AMYLOID-β GLYCINE ZIPPER 
IN AGGREGATION

5.1 Introduction 

Amyloid proteins are known for their propensity to misfold. Additionally, they are 

at the center of a variety of debilitating degenerative diseases such as Alzheimer’s disease 

(AD) and the amyloid-β protein (Aβ). Aβ is formed in vivo from the amyloid precursor 

protein (APP), a transmembrane protein that plays a role in cellular adhesion [134]. After 

APP undergoes a series of cleavage events, Aβ is secreted as a monomeric peptide. While 

the cause is unclear, monomer will begin to aggregate following a nucleation event and 

form toxic aggregates [31]. As Aβ aggregates, it develops a characteristic β-sheet structure 

and fibril morphology as the tertiary structure evolves [135]. Ultimately, these fibrils will 

deposit in the brain as the insoluble plaques frequently associated with AD [136].  

While work continues to enhance the understanding of higher order Aβ structure, 

recent works have focused on a poorly understood region of the primary structure: a C-

terminal glycine zipper motif (GxxxG). Glycine zippers are highly conserved in 

transmembrane proteins (TMP) [137], such as the region in APP from which Aβ is derived. 

Kim et. al explored the role of glycine zippers in vivo [138], finding zippers inside TMPs 

associated with prion, influenza, and myelin. It has been theorized that glycine zippers 
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maximize transmembrane packing and, specifically with Aβ, enhance pore 

formation [138]. 

The Aβ glycine zipper is of particular interest for its links to toxicity [139–141]. 

Several mutations to the zipper region have been identified, such as the Flemish mutation, 

which replaces an alanine (A) with a glycine (A21G), and the Arctic mutation, which 

replaces a glutamic acid (E) with a glycine (E22G). Both of these mutations extend the 

zipper an extra unit and are associated with early onset AD and prominent vascular 

hemorrhage associated with vascular Ab aggregate deposition [142]. Studies have shown 

that mutations in the zipper region can promote oligomerization [140,143,144]. However, 

some mutations to the zipper actually decrease toxicity in vivo [139]. Targeting either G29, 

G33, or G37 can reduce Aβ toxicity relative to the wild type form of Aβ (WT). These 

residues block both aggregation and cellular interaction, and as a result, zippers have been 

used to reverse engineer a therapy that inhibits aggregation, reduces cellular interaction, 

and ameliorates toxicity [56]. 

This study explores the role of the glycine zipper in Aβ aggregation through single 

and double point mutations. Mutants, shown in Figure 5.1, were selected for their ability 

to modify the zipper. To increase the motif, mutations were selected that expanded upon 

two naturally occurring and extensively studied mutations, A21G and E22G. Our variants, 

V18G E22G and L17G E22G, add an extra glycine zipper motif onto each familial mutant. 

Additionally, V18G E22G is shifted one unit, whereas L17G A21G is a direct extension. 

This study also explored the reduction of the glycine zipper by targeting G25 and replacing 

it with either a similarly small alanine (A) or bulky isoleucine (I). Preliminary results 

indicate that mutations with an extended zipper region rapidly aggregate, leading to the 
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formation of small aggregates with a similar morphology to the WT. Additionally, 

interference at G25 results in aggregates that are much more fibrillar but lack the typical 

lateral stacking associated with WT Aβ. Additionally, results indicate that the relative 

amount of soluble aggregates was increased when the zipper region was enhanced and 

reduced when it was decreased. Overall, results indicate that the glycine zipper plays an 

important role in Aβ aggregation and warrants further study. 

5.2 Materials and Methods 

5.2.01 Materials 

Lyophilized Aβ WT and mutants, as described in Figure 5.1, were obtained from 

Peptide 2.0 (Chantilly, VA). 

5.2.02 Monomer Aggregation 

WT Aβ1-40 and mutants were purified as described in Section 2.02. Aggregation, as 

described in Section 2.03, was monitored within reactions containing 20 µM SEC-purified 

monomer, 30 mM NaCl, and 40 µM thioflavin T. Reaction mixtures were loaded onto 30 

wells of a 96-well plate and covered with sealing tape to prevent evaporation. Reactions 

were agitated to promote aggregation and fluorescence measurements were acquired every 

15 min until plateau fluorescence was observed for all samples.  

5.2.03 Transmission Electron Microscopy 

 At terminal time points of aggregation (5.2.02), samples were prepared for TEM as 

described in Section 2.05. Mutant samples were added to grids and negatively stained with 

uranyl acetate. Images were acquired using a JEM 1400 Plus Transmission Electron 

Microscope accelerated to 120kV. 
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5.2.04 Modeling of Amyloid-β Aggregation 

Aggregation data (5.2.02) were fitted using a the advanced model as described with 

equations 3, 4, 5, and 6 in Section 2.04. Parameters were calculated representing the lag 

time (tlag), the growth rate (k), and the equilibrium plateau (A) from the growth phase as 

well as the final plateau (B), the decay phase rate constant (c), and the decay phase lag 

period tend. Using a robust fit method and program identified initial values, the model was 

iterated until convergence or 100,000 times, whichever occurred first.  

5.2.06 Hydrodynamic Radii Assessment 

Dynamic light scattering (DLS) was used to determine the aggregate hydrodynamic 

radius, as described in Section 2.15. 10 µL of each aggregation end product (5.2.02) was 

loaded into a quartz cuvette, and 50 acquisitions were averaged to obtain a hydrodynamic 

radius (RH). Results for each sample are reported. 

5.2.07 Assessment of Aggregate Conformation using ANS Spectroscopy 

 As described in Section 2.08, ANS spectroscopy was used to assess surface 

hydrophobicity. ANS was diluted to 997.5 µM in Tris-HCl (pH 8.0) and was used to dilute 

aggregation end products (5.2.02) to a final concentration of 1.33 µM protein and 66.5 µM 

ANS, a 50-fold excess. Sample fluorescence was measured, and fluorescence area was 

calculated, blank subtracted, and reported. 

5.2.08 Quantification of Soluble Aggregate 

 Aggregation end products (5.2.02) were subjected to size exclusion 

chromatography as described in Section 2.02. Samples were loaded onto a SEC column 

pre-treated with 0.5 mg BSA and their absorbance was measured using UV absorbance 

(280 nm). 
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5.3 Results 

5.3.1 Glycine zipper plays a role in aggregation kinetics 

 Aβ monomer was aggregated in the presence of a 2-fold excess of thioflavin T and 

30 µM NaCl. Samples were subjected to continuous agitation and monitored for 48 h 

(Figure 5.2A-D). Data were then fit using a novel method to accurately capture the post 

plateau change occurring after lag. While the model accurately reflects features for three 

samples, it does not capture the peak in either V18G E22G or G25A. 

Preliminary fits, shown in Figure 5.2 indicate that, compared with the WT (Figure 

5.2A), L17G A21G (Figure 5.2B) and V18G E22G (Figure 5.2C), mutations that extended 

the glycine zipper, accelerate aggregation, with aggregates beginning to form within the 

first hour. Meanwhile, G25A (Figure 5.2D), a mutation that reduces the glycine zipper, 

result in aggregates with a lag time similar to the WT. G25I, because of its diminished 

fluorescence, was unable to be fit to the model. Extent of aggregation is also impacted by 

glycine zipper mutations. While V18G E22G, the off-sequence mutation, results in an 

equilibrium roughly equivalent to the WT control, L17G A21G greatly enhances the extent 

of aggregation. Similarly, G25A, which replaces a glycine with similarly sized alanine, 

increases the extent of aggregation, while substitution with an isoleucine (G25I) inhibits 

the formation of thioflavin T positive aggregates.  

5.3.2 Glycine zipper mutations alter aggregate morphology 

Following aggregation, samples were loaded on grids, negatively stained, and 

imaged via TME for morphological changes (Figure 5.3). Compared to the WT which 

possess fibrils of varying lengths and width that form an interwoven mesh network, image 

obtained for glycine zipper mutations which increase the zipper length (L17G A21G and 
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V18G E22G, Figures 5.3B and C) create much smaller aggregates compared to the WT 

(Figure 5.3A). While L17G A21G has an amorphous structure, V18G E22G aggregates 

have a more typical, albeit truncated, fibril morphology. Conversely, G25A and G25I 

mutations (Figures 5.3D-E), which eliminate one glycine motif within the zipper, exhibit 

fibril morphology but lack the typical lateral association observed with the WT. 

5.3.3 Glycine zipper mutations reduce hydrodynamic radii  

 Aggregation end products were assessed for their effect on aggregate size using 

hydrodynamic radii (RH) measurements from DLS. Preliminary results, shown in 

Figure 5.4, indicate that three samples, L17G A21G, G25A, and G25I, were smaller than 

the WT by approximately 50%. Mutations that reduced the length of the glycine zipper 

created the smallest aggregates with RH of 75-100 nm, while mutations that increased the 

zipper produced aggregates between 100-125 nm. Additionally, L17G A21G aggregates 

are slightly smaller than V18G E22G, and G25A is slightly smaller than G25I.  

5.3.4 Glycine zipper mutations have no impact on conformation 

 End products of aggregation were assessed for conformational changes using ANS, 

a dye that binds to hydrophobic residues on the surface of aggregates, as shown in 

Figure 5.5. Aggregates were diluted into a 50-fold excess of ANS, and fluorescence was 

measured and integrated from 450-550 nm. Preliminary results demonstrate that the 

extension of the motif (L17G A21G, V18G E22G), creates aggregates roughly the same 

hydrophobicity as the WT, while G25I and G25A, mutations that reduce the motif, slightly 

reduce hydrophobicity. 
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5.3.5 Extension of the glycine motif increases the quantity of soluble aggregates 

 Aggregates were injected onto an AKTA FPLC with an attached column of 

Superdex 75 prep grade resin. Using in-line UV, the absorbance spectra was reported as 

shown in Figure 5.6. Insoluble aggregates were removed using a filter at the top of the 

column. Preliminary results indicate that when the glycine motif was extended (L17G 

A21G and V18G E22G) more soluble aggregates were formed, evidenced by increase 

protein elution within the void peak (10 mL). However, when the glycine motif was 

attenuated (G25A and G25I), a reduction in the relative quantity of soluble aggregates was 

observed. Additionally, a shifted monomer peak appears in the L17G A21G and G25A 

samples. 

5.4 Discussion 

 Glycine zippers are an important structural motif. Responsible for packing and 

folding within the leaflets of TMP, glycine zippers also are theorized to play a role in 

amyloid protein aggregation. One such TMP is APP, the protein that is cleaved to form 

Aβ, the protein associated with AD. Embedded within the APP sequence is a repeated chain 

of GxxxG, the so-called glycine zipper, much of which is located within the region cleaved 

to form Aβ. This study investigates four different modifications to the glycine zipper region 

within Aβ. L17G A21G and V18G E22G, mutations modeled after naturally occurring and 

particularly pathogenic familial AD mutations, were selected for their ability to increase 

the zipper motif. G25A and G25I, in contrast, were selected for their ability to attenuate 

with the motif with varying degrees of bulk. Mutations were assessed for effects on 

aggregation kinetics, morphology, size, and surface hydrophobicity. Results indicate that 

L17G A21G and V18G E22G, extensions of the motif, rapidly create aggregates that are 
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smaller than the WT, while attenuation of the motif, G25A and G25I, create aggregates 

that are more similar to the WT.  

 Mutations were initially tested for their ability to affect aggregation. Results, shown 

in Figure 5.2, indicate that mutations have a significant effect on aggregation. However, 

the kinetic model still fails to capture the peaks for several mutations (V18G E22G and 

G25A). Based on the fluorescent data, it appears mutations have a modest effect on lag 

phase for the growth, with L17G A21G and V18G E22G shortening the lag period while 

G25A slightly extends it. Additionally, only one mutation, L17G A21G, has a consistent 

effect on the extent of aggregation. Additional model optimization and data will shed more 

light on the true kinetic effects of these mutations.  

These results are not unexpected. Previous studies have examined the effects of 

A21G and E22G, two familial AD mutations commonly referred to as the Flemish and 

Arctic variant, respectively. These mutations are associated with particularly pathogenic 

strains of AD [23]. A21G and E22G also alter aggregation kinetics [143,145]; similar to 

our results, studies have shown that these mutations very rapidly aggregate [146]. 

Our preliminary results also align favorably with the observed behavior of 

mutations after equilibrium is reached [147]. Previous work examining any double 

mutations within Ab has shown their propensity to aggregate to a metastable state before 

decline to a secondary more stable plateau [146]. Norlin et al observed the changes in 

aggregation plateau with the E22G and were able to correlate it with aggregate clumping 

as part of fibril formation. This pattern is also observed with other single mutations 

effecting the Aβ salt bridge region near E22 [148]. Where our mutation was at the N-

terminal end of the motif, some studies have probed the elimination of internal glycines in 
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the zipper motif to reveal that elimination of one internal glycine hindered the formation 

of aggregates and reduced the quantity of aggregates formed [139,140,149].  

Previous works have also associated extensions in the glycine zipper with altered 

conformations. Rodziewicz-Motowidlo et. al attributed this observation to a change in 

helix formation during early aggregation: E22G forms a more well defined 310 helix, while 

WT forms a more stable a-helix [150]. While our work showed largely similar 

hydrophobic conformations when looking at ANS spectroscopy (Figure 5.5), this was by 

no means an exhaustive examination of structure, and it is possible that changes in 

hydrophobicity are due to the structural change and not a physical conformational shift.  

Indeed, in our own study, aggregate morphology was significantly altered as 

observed in TEM images, Figure 5.3, implying there are more structural changes than 

characterized by ANS alone. While zipper extensions resulted in an increase in soluble 

aggregates, they also created smaller aggregates. Similar to the familial AD mutants 

Poduslo and Howell investigated, aggregates were short and non-fibrillar [151]. However, 

it is possible this morphology arises because the aggregates had not reached their final fibril 

structure and were merely clumping, as observed by Norlin [146]. While the effects of an 

extended motif were remarkable, mutations attenuating the motif (G25I, G25A) created 

aggregates similar in morphology to the WT. Additionally, analysis of TEM images of 

aggregation end products (Figure 5.3) revealed a vastly changed morphology. Further 

characterization such as CD or NMR would shed more light on conformational changes. 

 In addition to a change in aggregate morphology, our results also show a reduction 

in aggregate hydrodynamic radius (Figure 5.4). Across the board, all four mutations 

reduced the hydrodynamic radius of aggregates formed. Similarly, Harmeier et al 
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previously targeted G33 and simultaneously decreased the appearance of large aggregates 

and increased the amount of smaller aggregates [149]. While our work only showed an 

increase in the amount of soluble aggregates for L17G A21G and V18G E22G (Figure 5.6), 

it is possible that G25A and G25I were forming insoluble species which were subsequently 

filtered out. Interestingly, while Aβ aggregation typically retains a large portion of 

monomer during aggregation [148], monomer peaks were only observable for two variants: 

L17G A21G and G25A, and the latter exhibited a shifted peak (Figure 5.6). 

While much work remains to fully understand their function, glycine zippers play 

an important role in amyloid aggregation. Our results indicate that extension of the glycine 

zipper both promotes aggregation and alters aggregate structure. L17G A21G and V18G 

E22G, two mutations which extended the zipper motif, rapidly aggregated and formed 

aggregates that were smaller in size than the WT. In contrast, G25A and G25I, which 

attenuated the zipper motif, delayed the onset of aggregate formation and created more 

prototypical aggregates: their morphology was largely similar to that of the WT albeit much 

thinner and with a reduced hydrophobicity. Ultimately, these results indicate that 

aggregation is significantly influenced by the remnants of the APP glycine zipper. 
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Figure 5.1. Glycine zipper mutations. Amyloid mutants were designed for their ability 
to increase (L17G A21G, V18G E22G) or decrease (G25A, G25I) the glycine zipper motif 
(black boxes) in the WT Aβ sequence. Mutants that increase the motif are either a direct 
extension (L17G A21G) or an extension shifted by 1 unit (V18G E22G).  Both extensions 
pass through the hydrophobic core (black line). Mutants that decrease the sequence use 
either a bulky (G25I) or constrained substitution (G25A) (grey box). 
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Figure 5.2. Glycine zipper mutations alter aggregation kinetics. Aβ monomer were 
aggregated in the presence of NaCl and thioflavin t, a dye that exhibits enhanced 
fluorescence in the presence of β-sheet structure. Preliminary data for Aβ WT (Panel A,  
¡) and mutants L17G A21G (Panel B, r), V18G E22G (Panel C, ¯) and G25A (Panel 
D, £) are shown relative to their fits to a kinetic model (solid lines).   
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Figure 5.3. Changes to the glycine zipper alter aggregate morphology. Aggregation 
end products were negatively stained and imaged using TEM. Mutations were compared 
against the WT (panel A), that either increased the glycine motif, L17G A21G (panel B) 
and V18G E22G (panel C), resulted in smaller more truncated aggregates. Images are 
representative of 2-3 independent experiments. 
  



www.manaraa.com

 

78 
 

 
Figure 5.4. Glycine motif changes reduce aggregate hydrodynamic radii. Following 
aggregation, hydrodynamic radii (RH) were measured using light scattering. Error bars 
indicate mean ± SEM, n=1-3. 
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Figure 5.5. Glycine zipper changes have a slight effect on conformation. Aggregation 
end products were diluted with ANS, a dye that exhibits enhanced fluorescence in the 
presence of hydrophobic residues and measured for fluorescence was measured at 
excitation 350 nm, emission 400-600 nm. Results were calculated using the integrated area 
under the curve from 450 – 550 nm. Error bars indicate mean ± SEM, n=1-3.  
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Figure 5.6. Soluble aggregates are effected by glycine zipper mutations. Aggregation 
end products were fractionated using SEC on Superdex 75 with in-line UV absorbance 
readings. Curves are representative of 1-2 independent experiments
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CHAPTER 6 

CONCLUSIONS

With the projected global growth in AD over the next few decades [152], continued 

research into treatment methods is vital. While many of the current treatments have evolved 

from targeting the symptoms, epidemiological studies have revealed equally promising 

target [116,153]. This study evaluated the effect of two classes of naturally occurring 

compounds: olive-derived phenylethanoids and soy isoflavones. These compounds were 

examined for their ability to modulate Aβ-induced toxicity through either anti-aggregation 

or antioxidant effects. In addition to modulating aggregation through naturally occurring 

compounds, this study also looked at the role of the internal amyloid glycine zipper. 

Through the use of glycine zipper mutants, the effect of zipper extension or reduction was 

examined for its effects on Aβ aggregate biophysical characteristics.  

Chapter 3 explored the ability of olive-derived phenylethanoids to modulate Aβ. A 

vital part of the Mediterranean diet, phenylethanoids oleuropein (OLE), hydroxytyrosol 

(TOH), and tyrosol (TYR) were examined for their ability to modulate aggregation, 

oligomerization, morphology, and changes to Aβ-induced caspase activation. While no 

compound had an observed impact on morphology, OLE effected monomer aggregation 

by increasing the relative extent of aggregation. All three phenylethanoids reduced the 

amount of monomer and shifted aggregate equilibrium towards larger aggregates. While 

these results were interesting, they did not translate to a reduction in Aβ-induced caspase 

activation.  
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The study went further to look at both antioxidant capacity and its effect on toxicity, 

revealing all phenylethanoids were good antioxidants. While this effect had a slight but 

insignificant effect on toxicity directly, antioxidant capacity correlated strongly with their 

ability to attenuate oligomer-induced toxicity. While these mechanisms were ineffective at 

reducing toxicity separately, the combined effect was remarkable: all phenylethanoids were 

able to reduce toxicity by 80%. More interestingly, TYR, the phenylethanoid that had an 

antioxidant merely equivalent to Trolox, had the greater reduction in toxicity. This 

indicates a multi-target effect between the two mechanisms. 

Chapter 4 examined the ability of genistin (OGEN), genistein (GEN), daidzin 

(ODEN), and daidzein (DEN), four soy-derived isoflavones (SIFs), to alter Aβ-associated 

toxicity and attempt to ascertain the mechanism. Initial results showed that all four SIFs 

were able to reduce oligomer toxicity when acting concurrently through anti-aggregation 

effects and antioxidant effects. Interestingly, there was a significant reduction in 

effectiveness when the 5 hydroxyl on OGEN and GEN was removed to create ODEN and 

DEN, respectively. No effect was observed with the addition of a glucose. We then 

assessed the anti-aggregation effects directly. Here, the presence of a glucose (OGEN and 

ODEN) significantly increased the extent of aggregation compared to the aglycones (GEN 

and DEN). And, while all four SIFs tested had a significant effect on the lag time to 

aggregate formation, only three of the SIFs (OGEN, GEN, and DEN) had an effect on 

aggregation rate. SIFs had minimal effect on Aβ oligomer size and distribution and no 

effect on conformation. Ultimately these anti-aggregation effects alone had no effect on 

toxicity. 
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Next, the effect of SIFs on antioxidant processes was examined. Previous studies 

have shown many SIF properties are directly attributable to their antioxidant capacity. 

Indeed, our results indicate that all four SIFs are good antioxidants and OGEN and GEN 

are significantly better than Trolox. Additionally, some their effectiveness could be due to 

their effect on intracellular processes, such as catalase. Results indicate that three of the 

SIFs, GEN, ODEN, and DEN, increased catalase activity. Unfortunately, only DEN had a 

significant effect on oligomer-toxicity.  

To explain the reduction observed with OGEN, GEN, and ODEN, we looked at the 

relative effect of each process and combined them. This revealed that each SIF acted in a 

different manner: ODEN acted equally through both its anti-aggregation effects and by 

upregulating intracellular processes. OGEN had a clear additive effect between the two 

mechanisms. DEN acted through antioxidant processes. Most interestingly, GEN exhibited 

synergy between the two mechanisms, a result our group has previously observed for 

kampferol, a structurally related polyphenol. 

Finally, Chapter 5 explored the role of the glycine zipper in Aβ aggregation through 

the use of selective mutations. Mutations were selected that either extended (L17G A21G, 

V18G E22G) or attenuated (G25A, G25I) the embedded Aβ glycine zipper motif. 

L17G A21G and V18G E22G were selected because of their similarity to two familial AD 

mutations: the Flemish and Arctic, respectively. G25A and G25I were selected to replace 

the glycine with a relatively similar or much larger amino acid to assess the importance of 

residue G25 on aggregation. Preliminary results indicate extension of the motif speeds 

aggregate formation, creating aggregates that are morphologically smaller than the WT and 

that begin to aggregate very rapidly. While the lag phase for the WT is many hours, these 
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mutants begin to aggregate in less than an hour. Conversely, mutations which eliminate 

one glycine in the sequence result in aggregates that have both a similar lag time and 

morphology to the WT. While the G25A and G25I variants formed a familiar mesh network 

like the WT, they were much thinner than WT fibrils.  

Studies to assess the conformation using ANS showed that both G25A and G25I 

had less exposed hydrophobic surfaces, while the other mutants were very similar to the 

WT. DLS studies revealed that all changes to the glycine zipper resulted in aggregates that 

exhibited a smaller hydrodynamic radius than the WT. Finally, size exclusion 

chromatography was used to assess the relative quantity of soluble aggregates formed. 

Results indicated that when the motif was extended (L17G A21G, V18G E22G) more 

soluble aggregates were formed while an attenuation (G25A, G25I) of the motif resulted 

in fewer soluble aggregates. This trend is likely due to the more typical fibril structure 

formed by the attenuated motif mutants. 

Ultimately, this study successfully identified three ways to modulate Aβ 

aggregation. Phenylethanoids are able to simultaneously act through anti-aggregation and 

antioxidant mechanisms to attenuate toxicity. Similarly, soy isoflavones are able to act 

through a variety of pathways to attenuate the effects of Aβ. And, finally, the glycine zipper 

is very important for amyloid formation. 
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CHAPTER 7 

FUTURE PERSPECTIVES

There are numerous avenues to continue this work. Previous studies with 

phenylethanoids, for example, have shown the ability to alter the conformation of specific 

aggregates and create non-toxic variants. It would be beneficial to explore our own 

oligomers in a similar manner: isolate various species and sizes of oligomers and 

biophysically characterize the specific effects on each region. It would also be helpful to 

investigate other potential intracellular processes stimulated by polyphenols. This study 

only began to examine potential mechanisms. While they are all very good antioxidants, 

the work with the SIFs show that there are likely other mechanisms modified by 

phenylethanoids. A viable route forward would be to analyze gene regulation, RNA, or 

even the associated downstream protein extracts to probe whether relative expression is 

altered by any of the treatments. 

Finally, SIFs should be explored for their exact mechanisms. While this work 

shows that the several SIFs are upregulating catalase, not all of them did. Previous studies 

with GEN show that it is able to upregulate a variety of intracellular processes. It is 

necessary to fully explore the pathways to examine their effects on toxicity. And, 

considering the previous studies that have shown transcriptional effects from SIFs, this 

would be a good place to start. Both phenylethanoids and SIFs would also benefit from an 

examination of specific caspase markers. While our assay probes a broad overview of 
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caspases, it would be most beneficial from a clinical perspective to isolate specific modes 

of action for the modulators. 

While additional studies would be beneficial, there are also other compounds, both 

phenylethanoid and SIF, to assess for their anti-aggregation effects. This study was by no 

means exhaustive in its assessment of phenylethanoids or SIFs: it looked at a limited subset 

set of 3 phenylethanoids and soy 4 soy isoflavones, choosing the most common of the two 

groups. However, the encouraging results presented here motivate the exploration of other 

compounds such as oleocanthal (phenylethanoid) and glycitein (SIF) that warrant further 

exploration. 

Finally, further studies with glycine zippers should focus on their interaction 

between aggregates and cells. This includes both in vitro effects to examine their toxicity 

as well as utilizing artificial constructs with lipid bilayers to examine pore formation. While 

the current work examines several possible mutations, the next series of changes should 

expand to other glycines in the zipper sequence, perhaps focusing on the intermediate 

glycines to learn whether similar effects are observed.  

Additionally, more work is needed to fully optimize the kinetic model. While it is 

effective in samples with more traditional growth and decay phases, edge cases, such as 

ones with very large or very small rate constants or samples with a delayed decay phase 

remain troublesome. Instead of using the average values for a trial to fit, it would be more 

representative to take the average of kinetic parameters. Additionally, larger sample sizes 

will help. Our sample size  is limited to 2-3 trials for each of the mutations and WT. A 

more robust number of trials will help to remove outliers. 
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APPENDIX A 

CELL INTERPRETOR CODE

The following script was written by Nick van der Munnik to identify and count 
cells using the Hoescht (blue) channel and apoptotic cells using the FLICA ™ (green) 
channel and quantify the relative amount of caspase active cells. To perform this, it also 
calls the “GHOSTCELLS2.m” function which is described in Appendix B. 
 
% SPECIFY THE NUMBER OF SAMPLES YOU WISH TO PROCESS 
NUMSAM=55; 
DAPI=[]; 
FITC=[]; 
FIG=[]; 
DATAOUTPUT=ZEROS(NUMSAM,3); 
INDEX=ZEROS(NUMSAM,1); 
TIC; 
 
I=1; 
WHILE I<=9 && I<=NUMSAM 
    DAPI=UINT8(IMREAD(STRCAT('DAPI00',NUM2STR(I),'.JPG'))); 
    FITC=UINT8(IMREAD(STRCAT('FITC00',NUM2STR(I),'.JPG'))); 
    [DATAOUTPUT(I,:),FIG]=GHOSTCELLS2(DAPI,FITC); 
    INDEX(I,1)=I; 
    IMWRITE(FIG,STRCAT('MLIMAGE',NUM2STR(I),'.TIF')); 
    FIGURE 
    IMSHOW(FIG) 
    I=I+1; 
END 
 
WHILE I>9 && I<=NUMSAM 
    DAPI=UINT8(IMREAD(STRCAT('DAPI0',NUM2STR(I),'.JPG'))); 
    FITC=UINT8(IMREAD(STRCAT('FITC0',NUM2STR(I),'.JPG'))); 
    [DATAOUTPUT(I,:),FIG]=GHOSTCELLS2(DAPI,FITC); 
    INDEX(I,1)=I; 
    IMWRITE(FIG,STRCAT('MLIMAGE',NUM2STR(I),'.TIF')); 
    FIGURE 
    IMSHOW(FIG) 
    I=I+1; 
 
END 
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FPRINTF('AVERAGE TIME PER SAMPLE (MINUTES)') 
TOC/(60*NUMSAM) 
FPRINTF('    INDEX   CELLS DEAD_CELLS  TUNEL/DAPI') 
DATAOUTPUT=[INDEX DATAOUTPUT
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APPENDIX B 

CELL COUNT PROGRAM

FUNCTION [DATA,OUTPUT]=GHOSTCELLS2(D,F) 
P=D(:,:,3);         % USES BLUE CHANNEL FOR DAPI 
FIT=F(:,:,2);       % USES GREEN CHANNEL FOR FITC 
DIM=SIZE(P); 
RDIM=DIM(1,1); 
CDIM=DIM(1,2); 
 
DTHRESH=5;          % LIVE/DEAD THRESHOLD 
CRAD=50;            % RADIUS OF CELL 
 
MINCON=38; 
MINEX=40; 
MAXCON=130; 
NSTEPS=5; 
PSTORE=P; 
CELLS=0; 
DEADCELLS=0; 
Q=P*0; 
S=P*0; 
OUTPUTF=P*0; 
OUTPUTD=P*0; 
LTAG=P*0; 
DTAG=P*0; 
RTAG=P*0; 
OUTPUT=ZEROS(RDIM*2,CDIM); 
BIN=P*0; 
NEGATIVE=P*0; 
CIDRINIT=ZEROS(1000,1); 
CIDCINIT=ZEROS(1000,1); 
 
%COUNT CELLS 
FOR STEP=0:NSTEPS 
    THRESH=110-STEP*(100/NSTEPS); 
    P=PSTORE; 
    %MAKE BLACK/WHITE 
    FOR I = 1:RDIM 
        FOR J = 1:CDIM 
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            IF P(I,J) >= THRESH 
                P(I,J) = 100;                 
            ELSE 
                P(I,J) = 0; 
            END 
            IF STEP==NSTEPS 
                IF P(I,J) >= THRESH 
                    BIN(I,J) = 1; 
                    NEGATIVE(I,J)=0; 
                ELSE 
                    BIN(I,J) = 0; 
                    NEGATIVE(I,J)=100; 
                END 
            END 
        END     
    END 
    %OUTLINE CELLS 
    FOR I = 2:RDIM-1 
        FOR J = 2:CDIM-1 
            IF P(I,J) ==100 
                IF P(I-1,J)==0 && P(I+1,J)==100 
                    P(I,J)=200; 
                ELSEIF P(I-1,J)==100 && P(I+1,J)==0 
                    P(I,J)=200; 
                ELSEIF P(I,J-1)==0 && P(I,J+1)==100 
                    P(I,J)=200; 
                ELSEIF P(I,J-1)==100 && P(I,J+1)==0 
                    P(I,J)=200; 
                END 
            END 
        END     
    END 
    P(1,:)=200; 
    P(:,1)=200; 
    P(RDIM,:)=200; 
    P(:,CDIM)=200; 
    %SQUEEZE CELL OUTLINES BY HALF MINIMUM FEATURE SIZE 
    FOR K=0:(MINCON/2) 
        FOR I = 2:RDIM-1 
            FOR J = 2:CDIM-1 
                IF P(I,J)==100 
                    IF P(I-1,J)==200+K && P(I+1,J)==100 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I-1,J)==100 && P(I+1,J)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==200+K && P(I,J+1)==100 
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                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==100 && P(I,J+1)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I-1,J)>=200 && P(I+1,J)>=200 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)>=200 && P(I,J+1)>=200 
                        P(I,J)=200+K+1; 
                    END 
                END 
            END     
        END 
%        IF(STEP==NSTEPS) 
%            FIGURE 
%            IMSHOW(P) 
%        END 
    END 
    FOR I = 1:RDIM 
        FOR J = 1:CDIM 
            IF P(I,J) >= 200 
                P(I,J) = 200; 
            END 
        END     
    END 
    FOR I = 2:RDIM-1 
        FOR J = 2:CDIM-1 
            IF P(I,J) ==100 
                IF P(I-1,J)==200 && P(I+1,J)==200 
                    P(I,J)=200; 
                ELSEIF P(I,J-1)==200 && P(I,J+1)==200 
                    P(I,J)=200; 
                END 
            END 
        END     
    END 
    P=P-Q;    
    FOR K=0:(MAXCON-MINCON)/2 
        %TEST FOR CONVERGENCE, EXCLUDE AREA AROUND CONFIRMED 
CELL 
        FOR I = (MINCON/2):RDIM-(MINCON/2) 
            FOR J = (MINCON/2):CDIM-(MINCON/2) 
                IF P(I,J) ==100 
                    INDEX=0; 
                    IF P(I-2,J)>=200 && P(I+2,J)>=200 
                        IF P(I,J-2)>=200 && P(I,J+2)>=200 
                            INDEX=1; 
                        END 
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                    END 
                    IF P(I-2,J-1)>=200 && P(I+2,J-1)>=200 
                        IF P(I+1,J-2)>=200 && P(I+1,J+2)>=200 
                            INDEX=INDEX+1; 
                        END 
                    END 
                    IF P(I-1,J-2)>=200 && P(I-1,J+2)>=200 
                        IF P(I-2,J+1)>=200 && P(I+2,J+1)>=200 
                            INDEX=INDEX+1; 
                        END 
                    END 
                    IF INDEX==3 
                        IF P(I-2,J-2)>=200 && P(I+2,J-2)>=200 
                            IF P(I-2,J+2)>=200 && P(I+2,J+2)>=200 
                                CELLS = CELLS+1; 
                                FOR M = -MINEX:MINEX;                     
                                    FOR N = -MINEX:MINEX; 
                                        IF SQRT(M^2+N^2)<=MINEX 
                                            IF I-M>=1 && I-M<=RDIM 
                                                IF J-N>=1 && J-N<=CDIM 
                                                    Q(I-M,J-N)=1000; 
                                                    P(I-M,J-N)=-1000; 
                                                END 
                                            END 
                                        END 
                                    END 
                                END 
                                CIDRINIT(CELLS)=I; 
                                CIDCINIT(CELLS)=J; 
                                S(I,J)=1000; 
                                FOR M = 0:9; 
                                    FOR N = 0:9; 
                                        LTAG(I-4+M,J-4+N)=1000; 
                                    END 
                                END 
                            END 
                        END 
                    END 
                END 
            END     
        END 
        %CONTINUE TO SQUEEZE 
        FOR I = 2:RDIM-1 
            FOR J = 2:CDIM-1 
                IF P(I,J)==100 
                    IF P(I-1,J)==200+K && P(I+1,J)==100 
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                        P(I,J)=200+K+1; 
                    ELSEIF P(I-1,J)==100 && P(I+1,J)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==200+K && P(I,J+1)==100 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==100 && P(I,J+1)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I-1,J)==200+(K+1) && P(I+1,J)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I-1,J)==200+K && P(I+1,J)==200+(K+1) 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==200+(K+1) && P(I,J+1)==200+K 
                        P(I,J)=200+K+1; 
                    ELSEIF P(I,J-1)==200+K && P(I,J+1)==200+(K+1) 
                        P(I,J)=200+K+1; 
                    END 
                END 
            END     
        END 
    END 
END 
 
%SEGMENT CELL CLUSTERS 
PC=IMCOMPLEMENT(PSTORE); 
PMIN=IMIMPOSEMIN(PC,~BIN|S); 
P=WATERSHED(PMIN); 
P=UINT8(P); 
FOR I = 1:RDIM 
    FOR J = 1:CDIM 
        IF P(I,J) >0 
            P(I,J) = 100;                 
        ELSE 
            P(I,J) = 0; 
        END 
    END     
END 
OUTPUTF=(P/100).*FIT; 
OUTPUTD=(P/100).*PSTORE; 
 
%COUNT DEADCELLS 
CVEC=ZEROS(CELLS,1); 
CIDR=CVEC; 
CIDC=CVEC; 
FOR I=1:CELLS 
    CIDR(I,1)=CIDRINIT(I,1); 
    CIDC(I,1)=CIDCINIT(I,1); 
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END 
 
FOR C=1:CELLS 
    I=CIDR(C,1); 
    J=CIDC(C,1); 
    FITCSUM=UINT32(0); 
    CMOVES=0; 
    FOR M=-CRAD:CRAD 
        FOR N=-CRAD:CRAD 
            IF I+M>1 && I+M<RDIM && J+N>1 && J+N<CDIM 
                IF SQRT(M^2+N^2)<=CRAD 
                    CMOVES=CMOVES+1; 
                    FITCSUM=FITCSUM+UINT32(FIT(I+M,J+N)); 
                    IF SQRT(M^2+N^2)>CRAD-1 
                        RTAG(I+M,J+N)=112; 
                    END 
                END 
            END 
        END 
    END 
    IF DOUBLE(FITCSUM/CMOVES)>=DTHRESH 
        DEADCELLS=DEADCELLS+1; 
        FOR M = -2:2; 
            FOR N = -2:2; 
                DTAG(I+M,J+N)=1000; 
            END 
        END 
    END 
END 
 
OUTPUTF=OUTPUTF+LTAG+RTAG-DTAG; 
OUTPUTD=OUTPUTD+LTAG-DTAG; 
OUTPUT=[OUTPUTF OUTPUTD]; 
DATA=ZEROS(1,3); 
DATA(1,1)=CELLS; 
DATA(1,2)=DEADCELLS; 
DATA(1,3)= DEADCELLS/CELLS; 
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APPENDIX C 

COINCIDING IMAGE FOR CHAPTER 3

 

Figure C.1. Aβ oligomers induce caspase activity for phenylethanoid experiments. 
SH-SY5Y human neuroblastoma cells were treated with either buffer alone (VEH), a 10 
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nM Aβ1-42 oligomer preparation (Aβ), or 1.5 U TNF-⍺ (TNF-⍺). A) Following a 24-h 
incubation, cells were stained for nuclear markers (Hoescht 33342, blue) and activated 
caspases (FLICA™, green) and imaged as described in Figure 4. Images are shown relative 
to a scale bar of 10 µm and are representative of 9-15 independent experiments. B) Images 
were quantified as in Figure 4, and the percentage of caspase active cells is reported. Error 
bars indicate SEM, n=9-15. **p<0.01, ***p<0.001 versus VEH
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APPENDIX D 

COINCIDING IMAGES FOR CHAPTER 4

 

Figure D.1. SIF-induced Aβ oligomers conformational changes. Aβ oligomers were 
diluted in a 50-fold excess of ANS and fluorescence was measured from 400-600 nm black 
line). For each sample, curves were integrated from 450-550  
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Figure D.2. SIFs reduce Aβ oligomer toxicity when acting through multiple 
mechanisms. SH-SY5Y human neuroblastoma cells were treated with 10,000 nM SIF and 
10 nM oligomers formed in the presence of a 10-fold excess of SIF. Following 24-h 
incubation, cells were stained for nuclear markers (Hoescht 33342, blue) and activated 
caspases (FLICA™, green), imaged, and quantified as described in Figure 4. Images are 
representative of 3-4 independent experiments. Scale bar = 10 µm. 

  



www.manaraa.com

 

112 
 

 

Figure D.3. SIFs have no anti-aggregation effect on Aβ oligomers induced caspase 
activity. SH-SY5Y human neuroblastoma cells were treated with 10 nM oligomer 
formed in the presence of 100 nM SIF. Following 24-h incubation, cells were stained for 
nuclear markers (Hoescht 33342, blue) and activated caspases (FLICA™, green), 
imaged, and quantified as described in Figure 4. Images are representative of 3-4 
independent experiments. Scale bar = 10 µm.  
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Figure D.4. Antioxidant effect of SIFs on Aβ oligomers induce caspase activity. 
SH-SY5Y human neuroblastoma cells were treated with 10,000 nM SIF and 10 nM 
oligomer formed in the absence of SIF. Following 24-h incubation, cells were stained for 
nuclear markers (Hoescht 33342, blue) and activated caspases (FLICA™, green), imaged, 
and quantified as described in Figure 4. Images are representative of 3-4 independent 
experiments. Scale bar = 10 µm. 
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Figure D.5. Aβ upregulates caspase activity. SH-SY5Y human neuroblastoma cells were 
treated with either vehicle (VEH), 10 nM Aβ oligomers (Aβ), or 1.5 U TNF⍺ (TNF⍺). A) 
Following 24-h incubation, cells were stained for nuclear markers (Hoescht 33342, blue) 
and activated caspases (FLICA™, green), imaged, and quantified as described in Figure 4. 
Images are representative of 15 independent experiments. B) The percentage of caspase 
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active cells is reported relative to the control, represented by a dashed line at 1. Error bars 
indicate SEM, n=15. **p<0.01, ***p<0.001 versus control. 
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